Diophantine Approximations of $\log2$ and Other Logarithms
Matematičeskie zametki, Tome 83 (2008) no. 3, pp. 428-438.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe a new approach to estimating $\mu(\log 2)$, without improving Rukhadze's result (1987). We find estimates for approximations to the number $\log 2$ by numbers from the field $\mathbb Q(\sqrt{2})$, to the number $\log((\sqrt{5}-1)/2)$ by numbers from the field $\mathbb Q(\sqrt{5})$, and to some other numbers.
Mots-clés : Diophantine approximation, Euler's formula, Goursat formula.
Keywords: irrationality exponent, irrationality measure, Gauss hypergeometric function, Kummer's formula
@article{MZM_2008_83_3_a8,
     author = {E. S. Salnikova},
     title = {Diophantine {Approximations} of $\log2$ and {Other} {Logarithms}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {428--438},
     publisher = {mathdoc},
     volume = {83},
     number = {3},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_3_a8/}
}
TY  - JOUR
AU  - E. S. Salnikova
TI  - Diophantine Approximations of $\log2$ and Other Logarithms
JO  - Matematičeskie zametki
PY  - 2008
SP  - 428
EP  - 438
VL  - 83
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_83_3_a8/
LA  - ru
ID  - MZM_2008_83_3_a8
ER  - 
%0 Journal Article
%A E. S. Salnikova
%T Diophantine Approximations of $\log2$ and Other Logarithms
%J Matematičeskie zametki
%D 2008
%P 428-438
%V 83
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_83_3_a8/
%G ru
%F MZM_2008_83_3_a8
E. S. Salnikova. Diophantine Approximations of $\log2$ and Other Logarithms. Matematičeskie zametki, Tome 83 (2008) no. 3, pp. 428-438. http://geodesic.mathdoc.fr/item/MZM_2008_83_3_a8/

[1] E. A. Rukhadze, “Otsenka snizu priblizheniya $\ln 2$ ratsionalnymi chislami”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 6 (1987), 25–29 | MR | Zbl

[2] V. Kh. Salikhov, “O mere irratsionalnosti $\ln 3$”, Dokl. RAN, 417:6 (2007), 753–755

[3] A. Heimonen, T. Matala-Aho, K. Väänänen, “On irrationality measures of the values of Gauss hypergeometric function”, Manuscripta Math., 81:1 (1993), 183–202 | DOI | MR | Zbl

[4] F. Amoroso, C. Viola, “Approximation measures for logarithms of algebraic numbers”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 30:1 (2001), 225–249 | MR | Zbl

[5] A. Heimonen, T. Matala-Aho, K. Väänänen, “An application of Jacobi type polynomials to irrationality measures”, Bull. Austral. Math. Soc., 50:2 (1994), 225–243 | DOI | MR | Zbl

[6] M. Hata, “Irrationality measures of the values of hypergeometric functions”, Acta Arith., 60:4 (1992), 335–347 | MR | Zbl

[7] V. V. Zudilin, “Esse o merakh irratsionalnosti $\pi$ i drugikh logarifmov”, Chebyshevskii sb., 5:2 (2004), 49–65 | MR

[8] M. Hata, “Legendre type polynomials and irrationality measures”, J. Reine Angew. Math., 407:1 (1990), 99–125 | MR | Zbl

[9] V. Kh. Salikhov, E. S. Salnikova, “Diofantovy priblizheniya logarifma "zolotogo secheniya”, Vestn. BGTU, 2007, no. 1, 111–119

[10] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii: Gipergeometricheskaya funktsiya. Funktsii Lezhandra, Nauka, M., 1973 | MR | Zbl