The Spectrum and the Scattering Problem for the Schr\"odinger Operator in Magnetic Field
Matematičeskie zametki, Tome 83 (2008) no. 3, pp. 402-416.

Voir la notice de l'article provenant de la source Math-Net.Ru

The main result of this paper is the proof of a nonexistence theorem on solutions with nonzero real singularities for the problem of scattering theory for the Schrödinger operator with magnetic and electric potentials.
Keywords: spectrum of the Schrödinger operator, Laplacian, scattering theory, electric potential, magnetic field, real singularity, resolvent equation.
@article{MZM_2008_83_3_a6,
     author = {Kh. Kh. Murtazin and A. N. Galimov},
     title = {The {Spectrum} and the {Scattering} {Problem} for the {Schr\"odinger} {Operator} in {Magnetic} {Field}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {402--416},
     publisher = {mathdoc},
     volume = {83},
     number = {3},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_3_a6/}
}
TY  - JOUR
AU  - Kh. Kh. Murtazin
AU  - A. N. Galimov
TI  - The Spectrum and the Scattering Problem for the Schr\"odinger Operator in Magnetic Field
JO  - Matematičeskie zametki
PY  - 2008
SP  - 402
EP  - 416
VL  - 83
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_83_3_a6/
LA  - ru
ID  - MZM_2008_83_3_a6
ER  - 
%0 Journal Article
%A Kh. Kh. Murtazin
%A A. N. Galimov
%T The Spectrum and the Scattering Problem for the Schr\"odinger Operator in Magnetic Field
%J Matematičeskie zametki
%D 2008
%P 402-416
%V 83
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_83_3_a6/
%G ru
%F MZM_2008_83_3_a6
Kh. Kh. Murtazin; A. N. Galimov. The Spectrum and the Scattering Problem for the Schr\"odinger Operator in Magnetic Field. Matematičeskie zametki, Tome 83 (2008) no. 3, pp. 402-416. http://geodesic.mathdoc.fr/item/MZM_2008_83_3_a6/

[1] A. Ya. Povzner, “O razlozhenii proizvolnykh funktsii po sobstvennym funktsiyam operatora $-\Delta u+cu$”, Matem. cb., 32:1 (1953), 109–156 | MR | Zbl

[2] A. Ya. Povzner, “O razlozhenii po funktsiyam, yavlyayuschimsya resheniem zadachi rasseyaniya”, Dokl. AN SSSR, 104:3 (1955), 360–363 | MR | Zbl

[3] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, t. 3: Teoriya rasseyaniya, Mir, M., 1982 | MR | Zbl

[4] Kh. Kh. Murtazin, V. A. Sadovnichii, Spektralnyi analiz mnogochastichnogo operatora Shredingera, Izd-vo MGU, M., 1988

[5] Kh. Tsikon, R. Freze, V. Kirsh, B. Saimon, Operatory Shredingera s prilozheniyami v kvantovoi mekhanike i globalnoi geometrii, Mir, M., 1990 | MR | Zbl

[6] Kh. Kh. Murtazin, A. N. Galimov, “Spektr i rasseyanie dlya operatorov Shredingera s neogranichennymi koeffitsientami”, Dokl. RAN, 407:3 (2006), 313–315 | MR

[7] M. B. Gubaidullin, Kh. Kh. Murtazin, “Nekotorye svoistva sobstvennykh funktsii operatora Shredingera v magnitnom pole”, TMF, 126:3 (2001), 443–454 | MR | Zbl