On the Distribution of Integer Random Variables Related by a Certain Linear Inequality.~II
Matematičeskie zametki, Tome 83 (2008) no. 3, pp. 381-401.

Voir la notice de l'article provenant de la source Math-Net.Ru

We continue our study of the problem on the allocation of indistinguishable particles to integer energy levels under the condition that the total energy of the system is bounded above. It is shown that the Bose condensation phenomenon can occur in this model. Systems of dimension $d1$ (including negative dimensions) are studied.
Keywords: Bose-Einstein statistics, Bose condensate, system of negative dimension, cumulative distribution
Mots-clés : convergence, limit distribution.
@article{MZM_2008_83_3_a5,
     author = {V. P. Maslov and V. E. Nazaikinskii},
     title = {On the {Distribution} of {Integer} {Random} {Variables} {Related} by a {Certain} {Linear} {Inequality.~II}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {381--401},
     publisher = {mathdoc},
     volume = {83},
     number = {3},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_3_a5/}
}
TY  - JOUR
AU  - V. P. Maslov
AU  - V. E. Nazaikinskii
TI  - On the Distribution of Integer Random Variables Related by a Certain Linear Inequality.~II
JO  - Matematičeskie zametki
PY  - 2008
SP  - 381
EP  - 401
VL  - 83
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_83_3_a5/
LA  - ru
ID  - MZM_2008_83_3_a5
ER  - 
%0 Journal Article
%A V. P. Maslov
%A V. E. Nazaikinskii
%T On the Distribution of Integer Random Variables Related by a Certain Linear Inequality.~II
%J Matematičeskie zametki
%D 2008
%P 381-401
%V 83
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_83_3_a5/
%G ru
%F MZM_2008_83_3_a5
V. P. Maslov; V. E. Nazaikinskii. On the Distribution of Integer Random Variables Related by a Certain Linear Inequality.~II. Matematičeskie zametki, Tome 83 (2008) no. 3, pp. 381-401. http://geodesic.mathdoc.fr/item/MZM_2008_83_3_a5/

[1] V. P. Maslov, V. E. Nazaikinskii, “O raspredelenii tselochislennykh sluchainykh velichin, svyazannykh odnim lineinym neravenstvom. I”, Matem. zametki, 83:2 (2008), 232–263