Common Coincidence- and Fixed-Point Theorems for a Class of Nonlinear Hybrid Mappings
Matematičeskie zametki, Tome 83 (2008) no. 3, pp. 361-369.

Voir la notice de l'article provenant de la source Math-Net.Ru

The concepts of multiple quasi-compatibility for single-valued and multi-valued mappings are defined. Some common fixed- and coincidence-point theorems for single-valued and multi-valued mappings satisfying a $\phi$-type condition are obtained by an iteration scheme. The conditions are not assumed to be of a contractive type.
Keywords: Hausdorff metric, fixed and coincidence point, compatibility and multiple quasi-compatibility.
@article{MZM_2008_83_3_a3,
     author = {Yisheng Lai},
     title = {Common {Coincidence-} and {Fixed-Point} {Theorems} for a {Class} of {Nonlinear} {Hybrid} {Mappings}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {361--369},
     publisher = {mathdoc},
     volume = {83},
     number = {3},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_3_a3/}
}
TY  - JOUR
AU  - Yisheng Lai
TI  - Common Coincidence- and Fixed-Point Theorems for a Class of Nonlinear Hybrid Mappings
JO  - Matematičeskie zametki
PY  - 2008
SP  - 361
EP  - 369
VL  - 83
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_83_3_a3/
LA  - ru
ID  - MZM_2008_83_3_a3
ER  - 
%0 Journal Article
%A Yisheng Lai
%T Common Coincidence- and Fixed-Point Theorems for a Class of Nonlinear Hybrid Mappings
%J Matematičeskie zametki
%D 2008
%P 361-369
%V 83
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_83_3_a3/
%G ru
%F MZM_2008_83_3_a3
Yisheng Lai. Common Coincidence- and Fixed-Point Theorems for a Class of Nonlinear Hybrid Mappings. Matematičeskie zametki, Tome 83 (2008) no. 3, pp. 361-369. http://geodesic.mathdoc.fr/item/MZM_2008_83_3_a3/

[1] Y. J. Cho, B. Fisher, G. S. Genga, “Coincidence theorems for nonlinear hybrid contractions”, Internat. J. Math. Math. Sci., 20:2 (1997), 249–256 | DOI | MR | Zbl

[2] H. Kaneko, S. Sessa, “Fixed point theorems for compatible multi-valued and single-valued mapping”, Internat. J. Math. Math. Sci., 12:2 (1989), 257–262 | DOI | MR | Zbl

[3] N. Shahzad, T. Kamran, “Coincidence points and $R$-weakly commuting maps”, Arch. Math. (Brno), 37:3 (2001), 179–183 | MR | Zbl

[4] H. K. Pathak, “Fixed point theorems for weak compatible multi-valued and single-valued mapping”, Acta Math. Hungar., 67:1–2 (1995), 69–78 | DOI | MR | Zbl

[5] H. K. Pathak, S. M. Kang, Y. J. Cho, “Coincidence and fixed point theorems for nonlinear hybrid generalized contractions”, Czechoslovak Math. J., 48:2 (1998), 341–357 | DOI | MR | Zbl

[6] S. B. Nadler, jr., “Multivalued contraction mappings”, Pacific J. Math., 30 (1969), 475–488 | MR | Zbl