Levinson's Condition in the Theory of Entire Functions: Equivalent Statements
Matematičeskie zametki, Tome 83 (2008) no. 3, pp. 350-360.

Voir la notice de l'article provenant de la source Math-Net.Ru

In terms of distribution functions of zeros of an entire function of exponential type, we prove assertions equivalent to the bilogarithmic Levinson's condition for the Borel transform of the function. As an application, we present solutions of two problems related to Pavlov–Korevaar–Dixon interpolation.
Keywords: entire function, bilogarithmic Levinson condition, Pavlov–Korevaar–Dixon interpolation
Mots-clés : Borel transform, Legendre transform, Hadamard's formula.
@article{MZM_2008_83_3_a2,
     author = {A. M. Gaisin},
     title = {Levinson's {Condition} in the {Theory} of {Entire} {Functions:} {Equivalent} {Statements}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {350--360},
     publisher = {mathdoc},
     volume = {83},
     number = {3},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_3_a2/}
}
TY  - JOUR
AU  - A. M. Gaisin
TI  - Levinson's Condition in the Theory of Entire Functions: Equivalent Statements
JO  - Matematičeskie zametki
PY  - 2008
SP  - 350
EP  - 360
VL  - 83
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_83_3_a2/
LA  - ru
ID  - MZM_2008_83_3_a2
ER  - 
%0 Journal Article
%A A. M. Gaisin
%T Levinson's Condition in the Theory of Entire Functions: Equivalent Statements
%J Matematičeskie zametki
%D 2008
%P 350-360
%V 83
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_83_3_a2/
%G ru
%F MZM_2008_83_3_a2
A. M. Gaisin. Levinson's Condition in the Theory of Entire Functions: Equivalent Statements. Matematičeskie zametki, Tome 83 (2008) no. 3, pp. 350-360. http://geodesic.mathdoc.fr/item/MZM_2008_83_3_a2/

[1] N. Levinson, Gap and Density Theorems, Amer. Math. Soc. Colloq. Publ., 26, Amer. Math. Soc., New York, 1940 | MR | Zbl

[2] P. Koosis, The Logarithmic Integral. I, Cambridge Stud. Adv. Math., 12, Cambridge Univ. Press, Cambridge, 1988 | MR | Zbl

[3] E. M. Dynkin, “Operatornoe ischislenie, osnovannoe na formule Koshi–Grina, i kvazianalitichnost klassov $D(h)$”, Issledovaniya po lineinym operatoram i teorii funktsii. 1, Zapiski nauch. sem. LOMI, 19, Nauka, L., 1970, 221–226 | MR | Zbl

[4] E. M. Dynkin, “O roste analiticheskoi funktsii vblizi mnozhestva ee osobykh tochek”, Issledovaniya po lineinym operatoram i teorii funktsii. 3, Zapiski nauch. sem. LOMI, 30, Nauka, L., 1972, 158–160 | MR | Zbl

[5] E. M. Dynkin, “Funktsii s zadannoi otsenkoi $\partial f/\partial\overline z$ i teorema N. Levinsona”, Matem. sb., 89:2 (1972), 182–190 | MR | Zbl

[6] A. L. Volberg, B. Erikke, “Summiruemost logarifma pochti analiticheskikh funktsii i obobschenie teoremy Levinsona–Kartrait”, Matem. sb., 130:3 (1986), 335–348 | MR | Zbl

[7] V. E. Katsnelson, “Tselye funktsii klassa Kartrait s neregulyarnym povedeniem”, Funkts. analiz i ego pril., 10:4 (1976), 35–44 | MR | Zbl

[8] J. E. Brennan, “Weighted polynomial approximation and quasianalyticity for general sets”, Algebra i analiz, 6:4 (1994), 69–89 | MR | Zbl

[9] J. Korevaar, M. Dixon, “Interpolation, strongly nonspanning powers and Macintyre exponents”, Nederl. Akad. Wetensch. Indag. Math., 40:2 (1978), 243–258 | MR | Zbl

[10] B. Berndtsson, “A note on Pavlov–Korevaar–Dixon interpolation”, Nederl. Akad. Wetensch. Indag. Math., 40:4 (1978), 409–414 | MR | Zbl

[11] A. M. Gaisin, “Usilennaya nepolnota sistemy eksponent i problema Makintaira”, Matem. sb., 182:7 (1991), 931–945 | MR | Zbl | Zbl

[12] M. M. Sheremeta, “Five open problems in the theory of entire functions”, Matematichnï studiï, 6 (1996), 157–159

[13] A. M. Gaisin, “Otsenka rosta i ubyvaniya tseloi funktsii beskonechnogo poryadka na krivykh”, Matem. sb., 194:8 (2003), 55–82 | MR | Zbl

[14] A. I. Pavlov, “O roste po krivym tselykh funktsii, zadannykh lakunarnymi stepennymi ryadami”, Sib. matem. zhurn., 13:5 (1972), 1169–1181 | MR | Zbl

[15] A. F. Leontev, Ryady eksponent, Nauka, M., 1976 | MR | Zbl