On the Chaotic Behavior of Cubic $p$-Adic Dynamical Systems
Matematičeskie zametki, Tome 83 (2008) no. 3, pp. 468-471.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: non-Archimedean norm, attractor, Siegel disc, $p$-adic dynamical system, cubic $p$-adic dynamics
Mots-clés : monomial system.
@article{MZM_2008_83_3_a12,
     author = {F. M. Mukhamedov},
     title = {On the {Chaotic} {Behavior} of {Cubic} $p${-Adic} {Dynamical} {Systems}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {468--471},
     publisher = {mathdoc},
     volume = {83},
     number = {3},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_3_a12/}
}
TY  - JOUR
AU  - F. M. Mukhamedov
TI  - On the Chaotic Behavior of Cubic $p$-Adic Dynamical Systems
JO  - Matematičeskie zametki
PY  - 2008
SP  - 468
EP  - 471
VL  - 83
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_83_3_a12/
LA  - ru
ID  - MZM_2008_83_3_a12
ER  - 
%0 Journal Article
%A F. M. Mukhamedov
%T On the Chaotic Behavior of Cubic $p$-Adic Dynamical Systems
%J Matematičeskie zametki
%D 2008
%P 468-471
%V 83
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_83_3_a12/
%G ru
%F MZM_2008_83_3_a12
F. M. Mukhamedov. On the Chaotic Behavior of Cubic $p$-Adic Dynamical Systems. Matematičeskie zametki, Tome 83 (2008) no. 3, pp. 468-471. http://geodesic.mathdoc.fr/item/MZM_2008_83_3_a12/

[1] A. Escassut, Analytic Elements in $p$-adic Analysis, World Sci. Publ., Singapore–New Jersey–London, 1995 | MR | Zbl

[2] A. Yu. Khrennikov, M. Nilsson, $p$-adic Deterministic and Random Dynamics, Math. Appl., 574, Kluwer Acad. Publ., Dordreht, 2004 | MR | Zbl

[3] J. Lubin, Compositio Math., 94:3 (1994), 321–346 | MR | Zbl

[4] T. Pezda, Acta Arith., 66:1 (1994), 11–22 | MR | Zbl

[5] S. Albeverio, B. Tirotstsi, A. Yu. Khrennikov, S. de Shmedt, TMF, 114:3 (1998), 349–365 | MR | Zbl

[6] E. Thiran, D. Verstegen, J. Weyers, J. Statist. Phys., 54:3–4 (1989), 893–913 | DOI | MR | Zbl

[7] N. Koblitz, $p$-adic Numbers, $p$-adic Analysis and Zeta-function, Grad. Texts in Math., 58, Springer-Verlag, Berlin, 1977 | MR | Zbl

[8] A. M. Robert, A Course in $p$-adic Analysis, Grad. Texts in Math., 198, Springer-Verlag, New York, 2000 | MR | Zbl

[9] R. Benedetto, C. R. Math. Acad. Sci. Paris, 335:7 (2002), 615–620 | MR | Zbl