On the Number of Eigenvalues for a Gibbs Ensemble of Self-Adjoint Operators
Matematičeskie zametki, Tome 83 (2008) no. 3, pp. 465-467
Cet article a éte moissonné depuis la source Math-Net.Ru
Mots-clés :
Gibbs ensemble
Keywords: self-adjoint operator, Hilbert space.
Keywords: self-adjoint operator, Hilbert space.
@article{MZM_2008_83_3_a11,
author = {V. P. Maslov},
title = {On the {Number} of {Eigenvalues} for a {Gibbs} {Ensemble} of {Self-Adjoint} {Operators}},
journal = {Matemati\v{c}eskie zametki},
pages = {465--467},
year = {2008},
volume = {83},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_3_a11/}
}
V. P. Maslov. On the Number of Eigenvalues for a Gibbs Ensemble of Self-Adjoint Operators. Matematičeskie zametki, Tome 83 (2008) no. 3, pp. 465-467. http://geodesic.mathdoc.fr/item/MZM_2008_83_3_a11/
[1] B. Helffer, Théorie Spectrale pour des Operateurs Globalement Elliptiques, Astérisque, 112, Soc. Math. France, Paris, 1984 | MR | Zbl
[2] F. A. Berezin, M. A. Shubin, Uravnenie Shredingera, Izd-vo MGU, M., 1983 | MR | Zbl
[3] A. N. Shiryaev, Veroyatnost, kn. 1: Elementarnaya teoriya veroyatnostei. Matematicheskie osnovaniya. Predelnye teoremy, MTsNMO, M., 2004
[4] V. V. Kozlov, Teplovoe ravnovesie po Gibbsu i Puankare, Sovremennaya matematika, In-t kompyuternykh issledovanii, M.–Izhevsk, 2002 | MR | Zbl