On the Number of Eigenvalues for a Gibbs Ensemble of Self-Adjoint Operators
Matematičeskie zametki, Tome 83 (2008) no. 3, pp. 465-467.

Voir la notice de l'article provenant de la source Math-Net.Ru

Mots-clés : Gibbs ensemble
Keywords: self-adjoint operator, Hilbert space.
@article{MZM_2008_83_3_a11,
     author = {V. P. Maslov},
     title = {On the {Number} of {Eigenvalues} for a {Gibbs} {Ensemble} of {Self-Adjoint} {Operators}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {465--467},
     publisher = {mathdoc},
     volume = {83},
     number = {3},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_3_a11/}
}
TY  - JOUR
AU  - V. P. Maslov
TI  - On the Number of Eigenvalues for a Gibbs Ensemble of Self-Adjoint Operators
JO  - Matematičeskie zametki
PY  - 2008
SP  - 465
EP  - 467
VL  - 83
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_83_3_a11/
LA  - ru
ID  - MZM_2008_83_3_a11
ER  - 
%0 Journal Article
%A V. P. Maslov
%T On the Number of Eigenvalues for a Gibbs Ensemble of Self-Adjoint Operators
%J Matematičeskie zametki
%D 2008
%P 465-467
%V 83
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_83_3_a11/
%G ru
%F MZM_2008_83_3_a11
V. P. Maslov. On the Number of Eigenvalues for a Gibbs Ensemble of Self-Adjoint Operators. Matematičeskie zametki, Tome 83 (2008) no. 3, pp. 465-467. http://geodesic.mathdoc.fr/item/MZM_2008_83_3_a11/

[1] B. Helffer, Théorie Spectrale pour des Operateurs Globalement Elliptiques, Astérisque, 112, Soc. Math. France, Paris, 1984 | MR | Zbl

[2] F. A. Berezin, M. A. Shubin, Uravnenie Shredingera, Izd-vo MGU, M., 1983 | MR | Zbl

[3] A. N. Shiryaev, Veroyatnost, kn. 1: Elementarnaya teoriya veroyatnostei. Matematicheskie osnovaniya. Predelnye teoremy, MTsNMO, M., 2004

[4] V. V. Kozlov, Teplovoe ravnovesie po Gibbsu i Puankare, Sovremennaya matematika, In-t kompyuternykh issledovanii, M.–Izhevsk, 2002 | MR | Zbl