Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2008_83_3_a11, author = {V. P. Maslov}, title = {On the {Number} of {Eigenvalues} for a {Gibbs} {Ensemble} of {Self-Adjoint} {Operators}}, journal = {Matemati\v{c}eskie zametki}, pages = {465--467}, publisher = {mathdoc}, volume = {83}, number = {3}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_3_a11/} }
V. P. Maslov. On the Number of Eigenvalues for a Gibbs Ensemble of Self-Adjoint Operators. Matematičeskie zametki, Tome 83 (2008) no. 3, pp. 465-467. http://geodesic.mathdoc.fr/item/MZM_2008_83_3_a11/
[1] B. Helffer, Théorie Spectrale pour des Operateurs Globalement Elliptiques, Astérisque, 112, Soc. Math. France, Paris, 1984 | MR | Zbl
[2] F. A. Berezin, M. A. Shubin, Uravnenie Shredingera, Izd-vo MGU, M., 1983 | MR | Zbl
[3] A. N. Shiryaev, Veroyatnost, kn. 1: Elementarnaya teoriya veroyatnostei. Matematicheskie osnovaniya. Predelnye teoremy, MTsNMO, M., 2004
[4] V. V. Kozlov, Teplovoe ravnovesie po Gibbsu i Puankare, Sovremennaya matematika, In-t kompyuternykh issledovanii, M.–Izhevsk, 2002 | MR | Zbl