Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2008_83_3_a1, author = {Ya. A. Butko}, title = {Feynman {Formulas} and {Functional} {Integrals} for {Diffusion} with {Drift} in a {Domain} on a {Manifold}}, journal = {Matemati\v{c}eskie zametki}, pages = {333--349}, publisher = {mathdoc}, volume = {83}, number = {3}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_3_a1/} }
Ya. A. Butko. Feynman Formulas and Functional Integrals for Diffusion with Drift in a Domain on a Manifold. Matematičeskie zametki, Tome 83 (2008) no. 3, pp. 333-349. http://geodesic.mathdoc.fr/item/MZM_2008_83_3_a1/
[1] O. G. Smolyanov, H. v. Weizsäcker, O. Wittich, “Brownian motion on a manifold as limit of stepwise conditioned standard Brownian motions”, Stochastic Processes, Physics and Geometry: New Interplays, II (Leipzig, 1999), CMS Conf. Proc., 29, Amer. Math. Soc., Providence, RI, 2000, 589–602 | MR | Zbl
[2] O. G. Smolyanov, H. v. Weizsäcker, O. Wittich, Chernoff's Theorem and Discrete Time Approximations of Brownian Motion on Manifolds, arXiv: math/0409155
[3] O. G. Smolyanov, H. v. Weizsäcker, O. Wittich, “Chernoff's Theorem and the construction of semigroups”, Evolution Equations: Applications to Physics, Industry, Life Sciences and Economics (Levico Terme, 2000), Progr. Nonlinear Differential Equations Appl., Birkhäuser, Basel, 2003, 349–358 | MR | Zbl
[4] O. G. Smolyanov, Kh. f. Vaitszekker, O. Vittikh, “Diffuziya na kompaktnom rimanovom mnogoobrazii i poverkhnostnye mery”, Dokl. RAN, 371:4 (2000), 442–447 | MR | Zbl
[5] O. G. Smolyanov, Kh. f. Vaitszekker, O. Vittikh, N. A. Sidorova, “Poverkhnostnye mery na traektoriyakh v rimanovykh mnogoobraziyakh, porozhdaemye diffuziyami”, Dokl. RAN, 377:4 (2001), 441–446 | MR | Zbl
[6] O. G. Smolyanov, Kh. f. Vaitszekker, O. Vittikh, N. A. Sidorova, “Poverkhnostnye mery Vinera na traektoriyakh v rimanovykh mnogoobraziyakh”, Dokl. RAN, 383:4 (2002), 458–463 | MR | Zbl
[7] R. P. Chernoff, “Note on product formulas for operator semigroups”, J. Funct. Anal., 2:2 (1968), 238–242 | DOI | MR | Zbl
[8] R. P. Chernoff, Product Formulas, Nonlinear Semigroups and Addition of Unbounded Operators, Mem. Amer. Math. Soc., 140, Amer. Math. Soc., Providence, RI, 1974 | MR | Zbl
[9] E. Nelson, “Feynman Integrals and the Schrödinger Equation”, J. Math. Phys., 5:3 (1964), 332–343 | DOI | MR | Zbl
[10] N. A. Sidorova, “The Smolyanov surface measure on trajectories in a Riemannian manifold”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 7:3 (2004), 461–471 | DOI | MR | Zbl
[11] Dzh. Nesh, “$C_1$-izometricheskie vlozheniya”, Matematika. Sb. per., 1:2 (1957), 3–16 | MR | Zbl
[12] Dzh. Nesh, “Problema vlozhenii dlya rimanovykh mnogoobrazii”, UMN, 26:4 (1971), 173–216 | MR | Zbl
[13] L. Andersson, B. K. Driver, “Finite-dimensional approximations to Wiener measure and path integral formulas on manifolds”, J. Func. Anal., 165:2 (1999), 430–498 | DOI | MR | Zbl
[14] B. K. Driver, A Primer on Riemannian Geometry and Stochastic Analysis on Path Spaces, http://math.ucsd.edu/\allowbreakd̃river/DRIVER/Preprints/stochastic_geometry.htm
[15] S. Vatanabe, N. Ikeda, Stokhasticheskie differentsialnye uravneniya i diffuzionnye protsessy, Nauka, M., 1986 | MR
[16] O. G. Smolyanov, A. Trumen, “Integraly Feinmana po traektoriyam v rimanovykh mnogoobraziyakh”, Dokl. RAN, 392:2 (2003), 174–179 | MR | Zbl
[17] O. G. Smolyanov, A. G. Tokarev, A. Truman, “Hamiltonian Feynman path integrals via the Chernoff formula”, J. Math. Phys., 43:10 (2002), 5161–5171 | DOI | MR | Zbl
[18] K. D. Elworthy, Stochastic Differential Equations on Manifolds, London Math. Soc. Lecture Note Ser., 70, Cambridge Univ. Press, Cambridge, 1982 | MR | Zbl
[19] Ya. A. Butko, “Representations of the solution of the Cauchy–Dirichlet problem for the heat equation in a domain on a compact Riemannian manifold by functional integrals”, Russ. J. Math. Phys., 11:2 (2004), 121–129 | MR | Zbl