Local Singularities of Chord Sets
Matematičeskie zametki, Tome 83 (2008) no. 2, pp. 286-304
Cet article a éte moissonné depuis la source Math-Net.Ru
In the present paper, we classify the local singularities of chord sets, i.e., of the envelopes of two-parameter families of straight lines connecting pairs of points on two smooth curves in $\mathbb R^3$; we also present geometric criteria for the chord set to have a given local singularity.
Keywords:
smooth curves in $\mathbb R^3$, chord set, local singularity, smooth curve, germ of a curve, diffeomorphism, projective invariance.
@article{MZM_2008_83_2_a9,
author = {L. P. Stunzhas},
title = {Local {Singularities} of {Chord} {Sets}},
journal = {Matemati\v{c}eskie zametki},
pages = {286--304},
year = {2008},
volume = {83},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_2_a9/}
}
L. P. Stunzhas. Local Singularities of Chord Sets. Matematičeskie zametki, Tome 83 (2008) no. 2, pp. 286-304. http://geodesic.mathdoc.fr/item/MZM_2008_83_2_a9/
[1] V. I. Arnold, A. N. Varchenko, S. M. Gusein-Zade, Osobennosti differentsiruemykh otobrazhenii, Izd-vo MTsNMO, M., 2004 | MR | MR | Zbl
[2] Sh. Izumiya, N. Takeuchi, “Singularities of ruled surfaces in $\mathbb R^3$”, Turkish J. Math., 28:2 (2004), 153–163 ; http://eprints.math.sci.hokudai.ac.jp/archive/00000648/ | MR | Zbl
[3] Dzh. N. Mazer, “Ustoichivost $C^\infty$-otobrazhenii. V. Transversalnost”, UMN, 29:1 (1974), 99–128 | MR | Zbl