On the Distribution of Integer Random Variables Related by a Certain Linear Inequality.~I
Matematičeskie zametki, Tome 83 (2008) no. 2, pp. 232-263.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the mathematical problem of the allocation of indistinguishable particles to integer energy levels under the condition that the number of particles can be arbitrary and the total energy of the system is bounded above. Systems of integer as well as fractional dimension are considered. The occupation numbers can either be arbitrary nonnegative integers (the case of “Bose particles”) or lie in a finite set $\{0,1,dots,R\}$ (the case of so-called parastatistics; for example, $R=1$ corresponds to the Fermi–Dirac statistics). Assuming that all allocations satisfying the given constraints are equiprobable, we study the phenomenon whereby, for large energies, most of the allocations tend to concentrate near the limit distribution corresponding to the given parastatistics.
Keywords: Bose-Einstein statistics, parastatistics, system of fractional dimension, cumulative distribution
Mots-clés : convergence, limit distribution.
@article{MZM_2008_83_2_a6,
     author = {V. P. Maslov and V. E. Nazaikinskii},
     title = {On the {Distribution} of {Integer} {Random} {Variables} {Related} by a {Certain} {Linear} {Inequality.~I}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {232--263},
     publisher = {mathdoc},
     volume = {83},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_2_a6/}
}
TY  - JOUR
AU  - V. P. Maslov
AU  - V. E. Nazaikinskii
TI  - On the Distribution of Integer Random Variables Related by a Certain Linear Inequality.~I
JO  - Matematičeskie zametki
PY  - 2008
SP  - 232
EP  - 263
VL  - 83
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_83_2_a6/
LA  - ru
ID  - MZM_2008_83_2_a6
ER  - 
%0 Journal Article
%A V. P. Maslov
%A V. E. Nazaikinskii
%T On the Distribution of Integer Random Variables Related by a Certain Linear Inequality.~I
%J Matematičeskie zametki
%D 2008
%P 232-263
%V 83
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_83_2_a6/
%G ru
%F MZM_2008_83_2_a6
V. P. Maslov; V. E. Nazaikinskii. On the Distribution of Integer Random Variables Related by a Certain Linear Inequality.~I. Matematičeskie zametki, Tome 83 (2008) no. 2, pp. 232-263. http://geodesic.mathdoc.fr/item/MZM_2008_83_2_a6/

[1] V. P. Maslov, On a distribution in frequency probability theory corresponding to the Bose–Einstein distribution, arXiv: math/0612394v1

[2] V. P. Maslov, “Revision of probability theory from the point of view of quantum statistics”, Russ. J. Math. Phys., 14:1 (2007), 66–95 | DOI | MR | Zbl

[3] V. P. Maslov, Kvantovaya ekonomika, Nauka, M., 2007 | Zbl

[4] V. P. Maslov, “Parastatistiki i obschaya teorema teorii veroyatnostei v prilozhenii k bezriskovym vlozheniyam”, Matem. zametki, 81:3 (2007), 478–480 | MR | Zbl

[5] V. P. Maslov, Quasithermodynamics and a correction to the Stefan–Boltzmann law, arXiv: 0801.0037v1

[6] L. D. Landau, I. M. Lifshits, Statisticheskaya fizika, GITTL, M.–L., 1951

[7] V. P. Maslov, V. V. Vyugin, “Teoremy o kontsentratsii dlya entropii i svobodnoi energii”, Probl. peredachi inform., 41:2 (2005), 72–88 | MR | Zbl

[8] V. P. Maslov, Negative dimension in general and asymptotic topology, arXiv: math/0612543v1

[9] M. V. Fedoryuk, Metod perevala, Nauka, M., 1977 | MR | Zbl

[10] I. S. Gradshtein, I. M. Ryzhik, Tablitsy integralov, summ, ryadov i proizvedenii, GIFML, M., 1963 | MR | Zbl