On the Properties of Generalized Frames
Matematičeskie zametki, Tome 83 (2008) no. 2, pp. 210-220.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we introduce the notion of generalized frames and study their properties. Discrete and integral frames are special cases of generalized frames. We give criteria for generalized frames to be integral (discrete). We prove that any bounded operator $A$ with a bounded inverse acting from a separable space $H$ to $L_2(\Omega)$ (where $\Omega$ is a space with countably additive measure) can be regarded as an operator assigning to each element $x\in H$ its coefficients in some generalized frame.
Keywords: frame, tight frame, integral frame, bounded operator, separable Hilbert space, countably additive measure.
Mots-clés : Lebesgue space
@article{MZM_2008_83_2_a4,
     author = {A. A. Zakharova},
     title = {On the {Properties} of {Generalized} {Frames}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {210--220},
     publisher = {mathdoc},
     volume = {83},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_2_a4/}
}
TY  - JOUR
AU  - A. A. Zakharova
TI  - On the Properties of Generalized Frames
JO  - Matematičeskie zametki
PY  - 2008
SP  - 210
EP  - 220
VL  - 83
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_83_2_a4/
LA  - ru
ID  - MZM_2008_83_2_a4
ER  - 
%0 Journal Article
%A A. A. Zakharova
%T On the Properties of Generalized Frames
%J Matematičeskie zametki
%D 2008
%P 210-220
%V 83
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_83_2_a4/
%G ru
%F MZM_2008_83_2_a4
A. A. Zakharova. On the Properties of Generalized Frames. Matematičeskie zametki, Tome 83 (2008) no. 2, pp. 210-220. http://geodesic.mathdoc.fr/item/MZM_2008_83_2_a4/

[1] R. J. Duffin, A. C. Schaeffer, “A class of nonharmonic Fourier series”, Trans. Amer. Math. Soc., 72:2 (1952), 341–366 | DOI | MR | Zbl

[2] I. Dobeshi, Desyat lektsii po veivletam, RKhD, M.–Izhevsk, 2001 | MR | Zbl

[3] S. Verblunsky, “Some theorems on F. A.-series”, Rend. Circ. Mat. Palermo (2), 3:1 (1954), 89–105 | DOI | MR | Zbl

[4] D. Han, D. R. Larson, Frames, Bases and Group Representations, Mem. Amer. Math. Soc., 147{, 697}, Amer. Math. Soc., Providence, RI, 2000 | MR | Zbl

[5] S. Malla, Veivlety v obrabotke signalov, Mir, M., 2005 | MR | Zbl

[6] Ch. Chui, Vvedenie v veivlety, Ucheb. posobie po spets. “Prikl. matematika”, Mir, M., 2001 | MR | Zbl

[7] K. Blatter, Veivlet-analiz. Osnovy teorii, Ucheb. posobie, Tekhnosfera, M., 2004 | MR | Zbl

[8] A. A. Zakharova, “Integralnye sistemy Rissa i ikh svoistva”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2004, no. 6, 28–33 | MR | Zbl

[9] T. P. Lukashenko, “O koeffitsientakh sistem razlozheniya, podobnykh ortogonalnym”, Matem. sb., 188:12 (1997), 57–72 | MR | Zbl

[10] T. P. Lukashenko, “Ortopodobnye neotritsatelnye sistemy razlozheniya”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1997, no. 5, 27–31 | MR | Zbl

[11] T. P. Lukashenko, “Obobschennye sistemy razlozheniya, podobnye ortogonalnym”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1998, no. 4, 6–10 | MR | Zbl

[12] T. P. Lukashenko, “O svoistvakh obobschennykh sistem razlozheniya, podobnykh ortogonalnym”, Izv. vuzov. Matem., 2000, no. 10, 33–48 | MR | Zbl

[13] T. Yu. Semenova, “O suschestvovanii i ekvivalentnosti obobschennykh ortopodobnykh sistem”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2001, no. 3, 10–15 | MR | Zbl

[14] N. Danford, Dzh. T. Shvarts, Lineinye operatory. Obschaya teoriya, t. 1, IL, M., 1962 | MR | Zbl

[15] N. K. Bari, Trigonometricheskie ryady, Fizmatgiz, M., 1961 | MR

[16] I. Stein, G. Veis, Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974 | MR | Zbl