On the Properties of Generalized Frames
Matematičeskie zametki, Tome 83 (2008) no. 2, pp. 210-220
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we introduce the notion of generalized frames and study their properties. Discrete and integral frames are special cases of generalized frames. We give criteria for generalized frames to be integral (discrete). We prove that any bounded operator $A$ with a bounded inverse acting from a separable space $H$ to $L_2(\Omega)$ (where $\Omega$ is a space with countably additive measure) can be regarded as an operator assigning to each element $x\in H$ its coefficients in some generalized frame.
Keywords:
frame, tight frame, integral frame, bounded operator, separable Hilbert space, countably additive measure.
Mots-clés : Lebesgue space
Mots-clés : Lebesgue space
@article{MZM_2008_83_2_a4,
author = {A. A. Zakharova},
title = {On the {Properties} of {Generalized} {Frames}},
journal = {Matemati\v{c}eskie zametki},
pages = {210--220},
publisher = {mathdoc},
volume = {83},
number = {2},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_2_a4/}
}
A. A. Zakharova. On the Properties of Generalized Frames. Matematičeskie zametki, Tome 83 (2008) no. 2, pp. 210-220. http://geodesic.mathdoc.fr/item/MZM_2008_83_2_a4/