Bounded Perturbations of Two-Dimensional Diffusion Processes with Nonlocal Conditions near the Boundary
Matematičeskie zametki, Tome 83 (2008) no. 2, pp. 181-198.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the existence of Feller semigroups arising in the theory of multidimensional diffusion processes. We study bounded perturbations of elliptic operators with boundary conditions containing an integral over the closure of the domain with respect to a nonnegative Borel measure without assuming that the measure is small. We state sufficient conditions on the measure guaranteeing that the corresponding nonlocal operator is the generator of a Feller semigroup.
Mots-clés : diffusion process, nonlocal condition.
Keywords: Feller semigroup, elliptic operator, Borel measure, Hille–Yosida theorem
@article{MZM_2008_83_2_a2,
     author = {P. L. Gurevich},
     title = {Bounded {Perturbations} of {Two-Dimensional} {Diffusion} {Processes} with {Nonlocal} {Conditions} near the {Boundary}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {181--198},
     publisher = {mathdoc},
     volume = {83},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_2_a2/}
}
TY  - JOUR
AU  - P. L. Gurevich
TI  - Bounded Perturbations of Two-Dimensional Diffusion Processes with Nonlocal Conditions near the Boundary
JO  - Matematičeskie zametki
PY  - 2008
SP  - 181
EP  - 198
VL  - 83
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_83_2_a2/
LA  - ru
ID  - MZM_2008_83_2_a2
ER  - 
%0 Journal Article
%A P. L. Gurevich
%T Bounded Perturbations of Two-Dimensional Diffusion Processes with Nonlocal Conditions near the Boundary
%J Matematičeskie zametki
%D 2008
%P 181-198
%V 83
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_83_2_a2/
%G ru
%F MZM_2008_83_2_a2
P. L. Gurevich. Bounded Perturbations of Two-Dimensional Diffusion Processes with Nonlocal Conditions near the Boundary. Matematičeskie zametki, Tome 83 (2008) no. 2, pp. 181-198. http://geodesic.mathdoc.fr/item/MZM_2008_83_2_a2/

[1] W. Feller, “The parabolic differential equations and the associated semi-groups of transformations”, Ann. of Math. (2), 55:3 (1952), 468–519 | DOI | MR | Zbl

[2] W. Feller, “Diffusion processes in one dimension”, Trans. Amer. Math. Soc., 77:1 (1954), 1–31 | DOI | MR | Zbl

[3] A. D. Venttsel, “O granichnykh usloviyakh dlya mnogomernykh diffuzionnykh protsessov”, Teoriya veroyatn. i ee primen., 4:2 (1959), 172–185 | MR | Zbl

[4] K. Taira, Semigroups, Boundary Value Problems and Markov Processes, Springer Monogr. Math., Springer-Verlag, Berlin, 2004 | MR | Zbl

[5] J. M. Bony, P. Courrége, P. Priouret, “Semi-groups de Feller sur une variété à bord compacte et problèmes aux limites intégro-différentiels du second ordre donnant lieu au principe du maximum”, Ann. Inst. Fourier (Grenoble), 18:2 (1968), 369–521 | MR | Zbl

[6] E. I. Galakhov, A. L. Skubachevskii, “On Feller semigroups generated by elliptic operators with integro-differential boundary conditions”, J. Differential Equations, 176:2 (2001), 315–355 | DOI | MR | Zbl

[7] Y. Ishikawa, “A remark on the existence of a diffusion process with non-local boundary conditions”, J. Math. Soc. Japan, 42:1 (1990), 171–184 | DOI | MR | Zbl

[8] K. Sato, T. Ueno, “Multi-dimensional diffusion and the Markov process on the boundary”, J. Math. Kyoto Univ., 4 (1965), 529–605 | MR | Zbl

[9] K. Taira, Diffusion Processes and Partial Differential Equations, Academic Press, Boston, MA, 1988 | MR | Zbl

[10] E. I. Galakhov, A. L. Skubachevskii, “O szhimayuschikh neotritsatelnykh polugruppakh c nelokalnymi usloviyami”, Matem. sb., 189:1 (1998), 45–78 | MR | Zbl

[11] A. L. Skubachevskii, “O nekotorykh zadachakh dlya mnogomernykh diffuzionnykh protsessov”, Dokl. AN SSSR, 307:2 (1989), 287–291 | MR | Zbl

[12] A. L. Skubachevskii, “Nonlocal elliptic problems and multidimensional diffusion processes”, Russian J. Math. Phys., 3:3 (1995), 327–360 | MR | Zbl

[13] P. L. Gurevich, “Ellipticheskie uravneniya c nelokalnymi usloviyami vblizi tochek sopryazheniya v prostranstvakh nepreryvnykh funktsii”, Tr. MIAN (to appear)

[14] D. Gilbarg, M. Trudinger, Ellipticheskie differentsialnye uravneniya vtorogo poryadka, Nauka, M., 1989 | MR | Zbl