Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2008_83_2_a0, author = {S. V. Astashkin}, title = {Lieb--Thirring {Inequality} for $L_p$ {Norms}}, journal = {Matemati\v{c}eskie zametki}, pages = {163--169}, publisher = {mathdoc}, volume = {83}, number = {2}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_2_a0/} }
S. V. Astashkin. Lieb--Thirring Inequality for $L_p$ Norms. Matematičeskie zametki, Tome 83 (2008) no. 2, pp. 163-169. http://geodesic.mathdoc.fr/item/MZM_2008_83_2_a0/
[1] E. Lieb, W. Thirring, “Inequalities for the moments of the eigenvalues of the Schrödinger hamiltonian and their relation to Sobolev inequalities”, Studies in Mathematical Physics, Princeton Univ. Press, Princeton, NJ, 1976, 269–303 | Zbl
[2] R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, Appl. Math. Sci., 68, Springer-Verlag, New York, 1997 | MR | Zbl
[3] A. A. Ilin, “Integralnye neravenstva Liba–Tirringa i ikh prilozheniya k attraktoram uravnenii Nave–Stoksa”, Matem. sb., 196:1 (2005), 33–66 | MR | Zbl
[4] B. S. Kashin, “Ob odnom klasse neravenstv dlya ortonormirovannykh sistem”, Matem. zametki, 80:2 (2006), 204–208 | MR | Zbl
[5] J.-M. Ghidaglia, M. Marion, R. Temam, “Generalization of the Sobolev–Lieb–Thirring inequalities and applications to the dimension of attractors”, Differential Integral Equations, 1:1 (1988), 1–21 | MR | Zbl
[6] A. Eden, C. Foias, “A simple proof of the generalized Lieb–Thirring inequalities in one-space dimension”, J. Math. Anal. Appl., 162:1 (1991), 250–254 | DOI | MR | Zbl
[7] B. S. Kashin, A. A. Saakyan, Ortogonalnye ryady, Izd-vo AFTs, M., 1999 | MR | Zbl
[8] S. M. Nikolskii, Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1969 | MR | Zbl
[9] I. Stein, Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR | Zbl