A Remark on the Nonrationality Problem for Generic Cubic Fourfolds
Matematičeskie zametki, Tome 83 (2008) no. 1, pp. 61-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the nonrationality of a generic cubic fourfold follows from a conjecture on the nondecomposability in the direct sum of nontrivial polarized Hodge structures of the polarized Hodge structure on transcendental cycles on a projective surface.
Keywords: nonrationality problem, generic cubic fourfold, nondecomposability conjecture, polarized Hodge structure, projective surface.
@article{MZM_2008_83_1_a6,
     author = {Vik. S. Kulikov},
     title = {A {Remark} on the {Nonrationality} {Problem} for {Generic} {Cubic} {Fourfolds}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {61--68},
     publisher = {mathdoc},
     volume = {83},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_1_a6/}
}
TY  - JOUR
AU  - Vik. S. Kulikov
TI  - A Remark on the Nonrationality Problem for Generic Cubic Fourfolds
JO  - Matematičeskie zametki
PY  - 2008
SP  - 61
EP  - 68
VL  - 83
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_83_1_a6/
LA  - ru
ID  - MZM_2008_83_1_a6
ER  - 
%0 Journal Article
%A Vik. S. Kulikov
%T A Remark on the Nonrationality Problem for Generic Cubic Fourfolds
%J Matematičeskie zametki
%D 2008
%P 61-68
%V 83
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_83_1_a6/
%G ru
%F MZM_2008_83_1_a6
Vik. S. Kulikov. A Remark on the Nonrationality Problem for Generic Cubic Fourfolds. Matematičeskie zametki, Tome 83 (2008) no. 1, pp. 61-68. http://geodesic.mathdoc.fr/item/MZM_2008_83_1_a6/

[1] A. Aeppli, “Modifikation von reellen und komplexen Mannigfaltigkeiten”, Comment. Math. Helv., 31:1 (1957), 219–301 | DOI | MR | Zbl

[2] P. Deligne, J. S. Milne, A. Ogus, K. Shih, Hodge cycles, motives, and Shimura varieties, Lecture Notes in Math., 900, Springer-Verlag, Berlin–Heidelberg–New York., 1982 | DOI | MR | Zbl

[3] N. Katz, “Étude cohomologique des pinceaux de Lefschetz”, Groupes de Monodromie en Géométrie Algébrique, Lecture Notes in Math., 340, Springer-Verlag, Berlin–New York, 1973, 254–327 | DOI | MR | Zbl

[4] C. H. Clemens, P. Griffiths, “The intermediate Jacobian of cubic threefold”, Ann. of Math. (2), 95:2 (1972), 281–356 | DOI | MR | Zbl

[5] S. L. Tregub, “Tri konstruktsii ratsionalnosti chetyrekhmernoi kubiki”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1984, no. 3, 8–14 | MR | Zbl

[6] S. L. Tregub, “Dva zamechaniya o chetyrekhmernoi kubike”, UMN, 48:2 (1993), 201–202 | MR | Zbl

[7] Vik. S. Kulikov, P. F. Kurchanov, “Kompleksnye algebraicheskie mnogoobraziya: periody integralov, struktury Khodzha”, Itogi nauki tekhniki. Sovrem. problemy matem. fundam. napr., 39, VINITI, M., 1989, 5–233

[8] P. Griffiths, “On periods of certain rational integrals. I”, Ann. of Math. (2), 90:3 (1969), 460–495 | DOI | MR | Zbl

[9] C. Voisin, “Théoréme de Torelli pour les cubiques de $\mathbb P^5$”, Invent. Math., 86:3 (1986), 577–601 | DOI | MR | Zbl