Regularized Traces of Higher-Order Singular Differential Operators
Matematičeskie zametki, Tome 83 (2008) no. 1, pp. 39-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider singular differential operators of order $2m$, $m\in\mathbb N$, with discrete spectrum in $L_2[0,+\infty)$. For self-adjoint extensions given by the boundary conditions $y(0)=y''(0)=\dotsb=y^{(2m-2)}(0)=0$ or $y'(0)=y'''(0)=\dotsb=y^{(2m-1)}(0)=0$, we obtain regularized traces. We present the explicit form of the spectral function, which can be used for calculating regularized traces.
Keywords: singular differential operator, regularized trace, Hilbert space, spectral function, self-adjoint extension, Green function.
Mots-clés : Sturm–Liouville problem
@article{MZM_2008_83_1_a4,
     author = {A. I. Kozko and A. S. Pechentsov},
     title = {Regularized {Traces} of {Higher-Order} {Singular} {Differential} {Operators}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {39--49},
     publisher = {mathdoc},
     volume = {83},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_1_a4/}
}
TY  - JOUR
AU  - A. I. Kozko
AU  - A. S. Pechentsov
TI  - Regularized Traces of Higher-Order Singular Differential Operators
JO  - Matematičeskie zametki
PY  - 2008
SP  - 39
EP  - 49
VL  - 83
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_83_1_a4/
LA  - ru
ID  - MZM_2008_83_1_a4
ER  - 
%0 Journal Article
%A A. I. Kozko
%A A. S. Pechentsov
%T Regularized Traces of Higher-Order Singular Differential Operators
%J Matematičeskie zametki
%D 2008
%P 39-49
%V 83
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_83_1_a4/
%G ru
%F MZM_2008_83_1_a4
A. I. Kozko; A. S. Pechentsov. Regularized Traces of Higher-Order Singular Differential Operators. Matematičeskie zametki, Tome 83 (2008) no. 1, pp. 39-49. http://geodesic.mathdoc.fr/item/MZM_2008_83_1_a4/

[1] A. I. Kozko, A. S. Pechentsov, “Spektralnaya funktsiya i regulyarizovannye sledy singulyarnykh differentsialnykh operatorov vysshikh poryadkov”, Dokl. RAN, 401:2 (2005), 160–162 | MR

[2] I. M. Gelfand, B. M. Levitan, “Ob odnom prostom tozhdestve dlya sobstvennykh znachenii differentsialnogo operatora vtorogo poryadka”, Dokl. AN SSSR, 88:4 (1953), 593–596 | MR | Zbl

[3] V. B. Lidskii, V. A. Sadovnichii, “Regulyarizovannye summy kornei klassa tselykh funktsii”, Funkts. analiz i ego pril., 1:2 (1967), 52–59 | MR | Zbl

[4] V. A. Sadovnichii, V. A. Lyubishkin, “Regulyarizovannye summy kornei odnogo klassa tselykh funktsii eksponentsialnogo tipa”, Dokl. AN SSSR, 256:4 (1981), 794–798 | MR | Zbl

[5] A. S. Pechentsov, “Regularized traces of differential operators”, Recent Advances in Operator Theory, Operator Algebras, and Their Applications, Oper. Theory Adv. Appl., 153, Birkhäuser, Basel, 2005, 211–227 | MR | Zbl

[6] V. A. Sadovnichii, V. E. Podolskii, “Sledy operatorov s otnositelno kompaktnym vozmuscheniem”, Matem. sb., 193:2 (2002), 129–152 | MR | Zbl

[7] A. I. Kozko, “Asimptotika spektra differentsialnogo operatora $-y''+q(x)y$ s granichnymi usloviyami v nule i bystro rastuschim potentsialom”, Differents. uravneniya, 41:5 (2005), 611–622 | MR | Zbl

[8] A. G. Kostyuchenko, “Asimptoticheskoe povedenie spektralnoi funktsii singulyarnykh differentsialnykh operatorov poryadka $2m$”, Dokl. AN SSSR, 168 (1966), 276–279 | MR | Zbl

[9] B. M. Levitan, I. S. Sargsyan, Vvedenie v spektralnuyu teoriyu. Samosopryazhennye obyknovennye differentsialnye operatory, Nauka, M., 1970 | MR | Zbl

[10] A. G. Kostyuchenko, O nekotorykh spektralnykh svoistvakh differentsialnykh operatorov, Dis. $\dots$ dokt. fiz.-matem. nauk, MGU, M., 1966

[11] M. G. Gasymov, “Summa raznosti sobstvennykh znachenii dvukh samosopryazhennykh operatorov”, Dokl. AN SSSR, 150:6 (1963), 1202–1205 | MR | Zbl

[12] M. Reed, B. Simon, Methods of Modern Mathematical Physics IV. Analysis of Operators, Academic Press, New York, 1978 | MR | Zbl