Regularized Traces of Higher-Order Singular Differential Operators
Matematičeskie zametki, Tome 83 (2008) no. 1, pp. 39-49
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider singular differential operators of order $2m$, $m\in\mathbb N$, with discrete spectrum in $L_2[0,+\infty)$. For self-adjoint extensions given by the boundary conditions $y(0)=y''(0)=\dotsb=y^{(2m-2)}(0)=0$ or $y'(0)=y'''(0)=\dotsb=y^{(2m-1)}(0)=0$, we obtain regularized traces. We present the explicit form of the spectral function, which can be used for calculating regularized traces.
Keywords:
singular differential operator, regularized trace, Hilbert space, spectral function, self-adjoint extension, Green function.
Mots-clés : Sturm–Liouville problem
Mots-clés : Sturm–Liouville problem
@article{MZM_2008_83_1_a4,
author = {A. I. Kozko and A. S. Pechentsov},
title = {Regularized {Traces} of {Higher-Order} {Singular} {Differential} {Operators}},
journal = {Matemati\v{c}eskie zametki},
pages = {39--49},
publisher = {mathdoc},
volume = {83},
number = {1},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_1_a4/}
}
A. I. Kozko; A. S. Pechentsov. Regularized Traces of Higher-Order Singular Differential Operators. Matematičeskie zametki, Tome 83 (2008) no. 1, pp. 39-49. http://geodesic.mathdoc.fr/item/MZM_2008_83_1_a4/