Regularized Traces of Higher-Order Singular Differential Operators
Matematičeskie zametki, Tome 83 (2008) no. 1, pp. 39-49

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider singular differential operators of order $2m$, $m\in\mathbb N$, with discrete spectrum in $L_2[0,+\infty)$. For self-adjoint extensions given by the boundary conditions $y(0)=y''(0)=\dotsb=y^{(2m-2)}(0)=0$ or $y'(0)=y'''(0)=\dotsb=y^{(2m-1)}(0)=0$, we obtain regularized traces. We present the explicit form of the spectral function, which can be used for calculating regularized traces.
Keywords: singular differential operator, regularized trace, Hilbert space, spectral function, self-adjoint extension, Green function.
Mots-clés : Sturm–Liouville problem
@article{MZM_2008_83_1_a4,
     author = {A. I. Kozko and A. S. Pechentsov},
     title = {Regularized {Traces} of {Higher-Order} {Singular} {Differential} {Operators}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {39--49},
     publisher = {mathdoc},
     volume = {83},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_1_a4/}
}
TY  - JOUR
AU  - A. I. Kozko
AU  - A. S. Pechentsov
TI  - Regularized Traces of Higher-Order Singular Differential Operators
JO  - Matematičeskie zametki
PY  - 2008
SP  - 39
EP  - 49
VL  - 83
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_83_1_a4/
LA  - ru
ID  - MZM_2008_83_1_a4
ER  - 
%0 Journal Article
%A A. I. Kozko
%A A. S. Pechentsov
%T Regularized Traces of Higher-Order Singular Differential Operators
%J Matematičeskie zametki
%D 2008
%P 39-49
%V 83
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_83_1_a4/
%G ru
%F MZM_2008_83_1_a4
A. I. Kozko; A. S. Pechentsov. Regularized Traces of Higher-Order Singular Differential Operators. Matematičeskie zametki, Tome 83 (2008) no. 1, pp. 39-49. http://geodesic.mathdoc.fr/item/MZM_2008_83_1_a4/