Cauchy Problem for the Korteweg--de~Vries Equation in the Case of a Nonsmooth Unbounded Initial Function
Matematičeskie zametki, Tome 83 (2008) no. 1, pp. 119-128
Voir la notice de l'article provenant de la source Math-Net.Ru
In the strip $\Pi=(-1,0)\times\mathbb R$, we establish the existence of solutions of the Cauchy problem for the Korteweg–de Vries equation $u_t+u_{xxx}+uu_x=0$ with initial condition either 1) $u(-1,x)=-x\theta(x)$, or 2) $u(-1,x)=-x\theta(-x)$, where $\theta$ is the Heaviside function. The solutions constructed in this paper are infinitely smooth for $t\in(-1,0)$ and rapidly decreasing as $x\to+\infty$. For the case of the first initial condition, we also establish uniqueness in a certain class. Similar special solutions of the KdV equation arise in the study of the asymptotic behavior with respect to small dispersion of the solutions of certain model problems in a neighborhood of lines of weak discontinuity.
Keywords:
Korteweg–de Vries equation, Cauchy problem, Burgers equation, Banach space, gas-dynamic problem, line of weak discontinuity, Bochner measurable mapping.
@article{MZM_2008_83_1_a12,
author = {A. V. Faminskii},
title = {Cauchy {Problem} for the {Korteweg--de~Vries} {Equation} in the {Case} of a {Nonsmooth} {Unbounded} {Initial} {Function}},
journal = {Matemati\v{c}eskie zametki},
pages = {119--128},
publisher = {mathdoc},
volume = {83},
number = {1},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_1_a12/}
}
TY - JOUR AU - A. V. Faminskii TI - Cauchy Problem for the Korteweg--de~Vries Equation in the Case of a Nonsmooth Unbounded Initial Function JO - Matematičeskie zametki PY - 2008 SP - 119 EP - 128 VL - 83 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2008_83_1_a12/ LA - ru ID - MZM_2008_83_1_a12 ER -
A. V. Faminskii. Cauchy Problem for the Korteweg--de~Vries Equation in the Case of a Nonsmooth Unbounded Initial Function. Matematičeskie zametki, Tome 83 (2008) no. 1, pp. 119-128. http://geodesic.mathdoc.fr/item/MZM_2008_83_1_a12/