Simplification of Formulas for the Number of Maps on Surfaces
Matematičeskie zametki, Tome 83 (2008) no. 1, pp. 14-23
Voir la notice de l'article provenant de la source Math-Net.Ru
Two combinatorial identities obtained by the author are used to simplify formulas for the number of general rooted cubic planar maps, for the number of $g$-essential maps on surfaces of small genus, and also for rooted Eulerian maps on the projective plane. Besides, an asymptotics for the number of maps with a large number of vertices is obtained.
Keywords:
cubic planar map, $g$-essential map, surface of small genus, projective plane, Klein bottle, rooted Eulerian map, Euler beta function, gamma function, Stirling's formula.
@article{MZM_2008_83_1_a1,
author = {V. A. Voblyi},
title = {Simplification of {Formulas} for the {Number} of {Maps} on {Surfaces}},
journal = {Matemati\v{c}eskie zametki},
pages = {14--23},
publisher = {mathdoc},
volume = {83},
number = {1},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_1_a1/}
}
V. A. Voblyi. Simplification of Formulas for the Number of Maps on Surfaces. Matematičeskie zametki, Tome 83 (2008) no. 1, pp. 14-23. http://geodesic.mathdoc.fr/item/MZM_2008_83_1_a1/