Simplification of Formulas for the Number of Maps on Surfaces
Matematičeskie zametki, Tome 83 (2008) no. 1, pp. 14-23.

Voir la notice de l'article provenant de la source Math-Net.Ru

Two combinatorial identities obtained by the author are used to simplify formulas for the number of general rooted cubic planar maps, for the number of $g$-essential maps on surfaces of small genus, and also for rooted Eulerian maps on the projective plane. Besides, an asymptotics for the number of maps with a large number of vertices is obtained.
Keywords: cubic planar map, $g$-essential map, surface of small genus, projective plane, Klein bottle, rooted Eulerian map, Euler beta function, gamma function, Stirling's formula.
@article{MZM_2008_83_1_a1,
     author = {V. A. Voblyi},
     title = {Simplification of {Formulas} for the {Number} of {Maps} on {Surfaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {14--23},
     publisher = {mathdoc},
     volume = {83},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_1_a1/}
}
TY  - JOUR
AU  - V. A. Voblyi
TI  - Simplification of Formulas for the Number of Maps on Surfaces
JO  - Matematičeskie zametki
PY  - 2008
SP  - 14
EP  - 23
VL  - 83
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_83_1_a1/
LA  - ru
ID  - MZM_2008_83_1_a1
ER  - 
%0 Journal Article
%A V. A. Voblyi
%T Simplification of Formulas for the Number of Maps on Surfaces
%J Matematičeskie zametki
%D 2008
%P 14-23
%V 83
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_83_1_a1/
%G ru
%F MZM_2008_83_1_a1
V. A. Voblyi. Simplification of Formulas for the Number of Maps on Surfaces. Matematičeskie zametki, Tome 83 (2008) no. 1, pp. 14-23. http://geodesic.mathdoc.fr/item/MZM_2008_83_1_a1/

[1] W. T. Tutte, “The enumerative theory of planar maps”, A Survey of Combinatorial Theory (Proc. Internat. Sympos., Colorado State Univ., Fort Collins, Colo., 1971), North-Holland, Amsterdam, 1973, 437–448 | MR | Zbl

[2] E. A. Bender, L. B. Richmond, “A survey of the asymptotic behavior of maps”, J. Combin. Theory Ser. B, 40:3 (1986), 297–329 | DOI | MR | Zbl

[3] Y. Liu, Enumerative theory of maps, Math. Appl., 468, Kluwer Acad. Publ., Dordrecht, 1999 | MR | Zbl

[4] Y. Liu, “A note on the number of cubic planar maps”, Acta Math. Sci. Ser. B Engl. Ed., 12:3 (1992), 282–285 | MR | Zbl

[5] R. Hao, Y. Cai, Y. Liu, “Counting $g$-essential maps on surfaces with small genera”, Korean J. Comput. Appl. Math., 9:2 (2002), 451–463 | MR | Zbl

[6] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integraly i ryady: Elementarnye funktsii, Fizmatlit, M., 1981 | MR | Zbl

[7] V. A. Voblyi, “Asimptotika chisla kubicheskikh planarnykh kart”, Obozr. prikl. promysh. matem., 12:4 (2005), 850–851

[8] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii: Gipergeometricheskaya funktsiya, Fizmatlit, 1965 | MR | Zbl

[9] H. W. Gould, Combinatorial Identities., A standardized Set of Tables Listing 500 Binomial Coefficient Summations, Morgentown, West Virginia Univ., 1972 | MR | Zbl

[10] V. A. Voblyi, “Uproschenie formul dlya chisla $g$-suschestvennykh kart na poverkhnostyakh s malym rodom”, Obozr. prikl. promysh. matem., 11:2 (2004), 236–237

[11] H. Ren, Y. Liu, “Counting rooted eulerian maps on the projective plane”, Acta Math. Sci. Ser. B Engl. Ed., 20:2 (2000), 169–174 | MR | Zbl