Cauchy Problem for Parabolic Systems with Convolution Operators in Periodic Spaces
Matematičeskie zametki, Tome 82 (2007) no. 6, pp. 850-872.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a class of periodic systems of parabolic type with pseudodifferential operators containing $\{\vec p,\vec h\}$-parabolic systems of partial differential equations, we study the properties of the fundamental matrices of the solutions and establish the well-posed solvability of the Cauchy problem for these systems in the spaces of generalized periodic functions of the type of Gevrey ultradistributions. For a particular subclass of systems, we describe the maximal classes of well-posed solvability of the Cauchy problem.
Keywords: Cauchy problem, parabolic system, convolution operator, periodic space, Weyl operator, trigonometric Fourier series, Banach space.
Mots-clés : Gevrey ultradistribution
@article{MZM_2007_82_6_a5,
     author = {V. A. Litovchenko},
     title = {Cauchy {Problem} for {Parabolic} {Systems} with {Convolution} {Operators} in {Periodic} {Spaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {850--872},
     publisher = {mathdoc},
     volume = {82},
     number = {6},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_6_a5/}
}
TY  - JOUR
AU  - V. A. Litovchenko
TI  - Cauchy Problem for Parabolic Systems with Convolution Operators in Periodic Spaces
JO  - Matematičeskie zametki
PY  - 2007
SP  - 850
EP  - 872
VL  - 82
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_82_6_a5/
LA  - ru
ID  - MZM_2007_82_6_a5
ER  - 
%0 Journal Article
%A V. A. Litovchenko
%T Cauchy Problem for Parabolic Systems with Convolution Operators in Periodic Spaces
%J Matematičeskie zametki
%D 2007
%P 850-872
%V 82
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_82_6_a5/
%G ru
%F MZM_2007_82_6_a5
V. A. Litovchenko. Cauchy Problem for Parabolic Systems with Convolution Operators in Periodic Spaces. Matematičeskie zametki, Tome 82 (2007) no. 6, pp. 850-872. http://geodesic.mathdoc.fr/item/MZM_2007_82_6_a5/

[1] V. I. Gorbachuk, M. L. Gorbachuk, “Trigonometricheskie ryady i obobschennye periodicheskie funktsii”, Dokl. AN SSSR, 257:4 (1981), 799–804 | MR | Zbl

[2] V. I. Gorbachuk, M. L. Gorbachuk, Granichnye zadachi dlya differentsialno-operatornykh uravnenii, Naukova dumka, Kiev, 1984 | MR | Zbl

[3] V. V. Gorodetskii, “Zadacha Koshi dlya parabolicheskikh po Shilovu uravnenii v klassakh obobschennykh periodicheskikh funktsii”, Izv. vuzov. Ser. matem., 1988, no. 5, 82–84 | MR | Zbl

[4] V. V. Gorodetskii, Ya. M. Drin, “Parabolichni psevdodiferentsialni rivnyannya u prostorakh uzagalnenikh periodichnikh funktsii”, Dop. AN URSR, 1991, no. 8, 20–24 | MR

[5] V. V. Gorodetskii, Mnozhini pochatkovikh znachen gladkikh rozv'yazkiv diferentsialno-operatornikh rivnyan parabolichnogo tipu, Ruta, Chernivtsi, 1998

[6] A. Fridman, Uravneniya s chastnymi proizvodnymi parabolicheskogo tipa, Mir, M., 1968 | MR | Zbl

[7] I. M. Gelfand, G. E. Shilov, Nekotorye voprosy teorii differentsialnykh uravnenii, Obobschennye funktsii, 3, Fizmatgiz, M., 1958 | MR | Zbl

[8] S. D. Eidelman, Parabolicheskie sistemy, Nauka, M., 1964 | MR | Zbl

[9] J. L. Lions, E. Magenes, Problems aux limites non homogénes et applications, v. 3, Travaux et Recherches Mathematiques, 20, Dunod, Paris, 1970 | MR | Zbl

[10] S. G. Samko, A. A. Kilbas, O. I. Marichev, Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987 | MR | Zbl

[11] V. A. Litovchenko, “Zobrazhennya uzagalnenogo diferentsiyuvannya za E. Postom u klasichnii formi drobovogo diferentsiyuvannya”, Nauk. visnik Chernivetskogo un-tu: Zb. nauk. pr., vip. 76, Matematika, Ruta, Chernivtsi, 2000, 54–61 | MR

[12] V. A. Litovchenko, “Zadacha Koshi dlya $\{\vec p,\vec h\}$-parabolicheskikh uravnenii s koeffitsientami, zavisyaschimi ot vremeni”, Matem. zametki, 77:3 (2005), 395–411 | MR | Zbl

[13] F. R. Gantmakher, Teoriya matrits, 4-e izd., Nauka, M., 1968 | MR | Zbl