Affine Geometry of Modules over a Ring with Invariant Basis Number
Matematičeskie zametki, Tome 82 (2007) no. 6, pp. 838-849.

Voir la notice de l'article provenant de la source Math-Net.Ru

The fundamental theorem of affine geometry over rings with invariant basis numbers is considered.
Keywords: fundamental theorem of affine geometry, invariant basis number, module over an $\operatorname{IB}$-ring, projective geometry, complete lattice, collineation.
@article{MZM_2007_82_6_a4,
     author = {A. A. Lashkhi and T. G. Kvirikashvili},
     title = {Affine {Geometry} of {Modules} over a {Ring} with {Invariant} {Basis} {Number}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {838--849},
     publisher = {mathdoc},
     volume = {82},
     number = {6},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_6_a4/}
}
TY  - JOUR
AU  - A. A. Lashkhi
AU  - T. G. Kvirikashvili
TI  - Affine Geometry of Modules over a Ring with Invariant Basis Number
JO  - Matematičeskie zametki
PY  - 2007
SP  - 838
EP  - 849
VL  - 82
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_82_6_a4/
LA  - ru
ID  - MZM_2007_82_6_a4
ER  - 
%0 Journal Article
%A A. A. Lashkhi
%A T. G. Kvirikashvili
%T Affine Geometry of Modules over a Ring with Invariant Basis Number
%J Matematičeskie zametki
%D 2007
%P 838-849
%V 82
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_82_6_a4/
%G ru
%F MZM_2007_82_6_a4
A. A. Lashkhi; T. G. Kvirikashvili. Affine Geometry of Modules over a Ring with Invariant Basis Number. Matematičeskie zametki, Tome 82 (2007) no. 6, pp. 838-849. http://geodesic.mathdoc.fr/item/MZM_2007_82_6_a4/

[1] A. Brezuleanu, D.-C. Rǎdulescu, “About full or injective lineations”, J. Geom., 23:1 (1984), 45–60 | DOI | MR | Zbl

[2] E. Artin, Geometric algebra, Interscience tracts in pure and applied mathematics, 3, Interscience Publishers, Inc., New York–London, 1957 | MR | Zbl

[3] J. Lipman, “Definition of affine geometry by a group of transformations”, Canad. Math. Bull., 4 (1961), 265–278 | MR | Zbl

[4] C. C. Perelli, “Images of affine parallel structures by semi-collineations”, Reports of the mathematics seminar of Brescia, Rend. Sem. Math. Brescia, 8, Vita e Pensiero, Milan, 1984, 97–109 | MR

[5] P. Scherk, “On the fundamental theorem of affine geometry”, Canad. Math. Bull., 5 (1962), 67–69 | MR | Zbl

[6] S. E. Schmidt, Grundlegungen zu einer allgemeinen affinen Geometrie, Birkhaüser Verlag, Basel, 1995 | MR | Zbl

[7] P. M. Cohn, Free rings and their relations, London Mathematical Society Monographs, 2, Academic Press, Inc., London–New York, 1971 | MR | Zbl

[8] T. M. Gelashvili, A. A. Lashkhi, “Coset lattices and the fundamental theorem of affine geometry for Lie algebras”, Proc. A. Razmadze Math. Inst., 119 (1999), 43–58 | MR | Zbl

[9] S. E. Schmidt, S. Weller, “Fundamentalsatz für affine Räume über Moduln”, Results Math., 30:1–2 (1996), 151–159 | MR | Zbl