Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2007_82_6_a4, author = {A. A. Lashkhi and T. G. Kvirikashvili}, title = {Affine {Geometry} of {Modules} over a {Ring} with {Invariant} {Basis} {Number}}, journal = {Matemati\v{c}eskie zametki}, pages = {838--849}, publisher = {mathdoc}, volume = {82}, number = {6}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_6_a4/} }
A. A. Lashkhi; T. G. Kvirikashvili. Affine Geometry of Modules over a Ring with Invariant Basis Number. Matematičeskie zametki, Tome 82 (2007) no. 6, pp. 838-849. http://geodesic.mathdoc.fr/item/MZM_2007_82_6_a4/
[1] A. Brezuleanu, D.-C. Rǎdulescu, “About full or injective lineations”, J. Geom., 23:1 (1984), 45–60 | DOI | MR | Zbl
[2] E. Artin, Geometric algebra, Interscience tracts in pure and applied mathematics, 3, Interscience Publishers, Inc., New York–London, 1957 | MR | Zbl
[3] J. Lipman, “Definition of affine geometry by a group of transformations”, Canad. Math. Bull., 4 (1961), 265–278 | MR | Zbl
[4] C. C. Perelli, “Images of affine parallel structures by semi-collineations”, Reports of the mathematics seminar of Brescia, Rend. Sem. Math. Brescia, 8, Vita e Pensiero, Milan, 1984, 97–109 | MR
[5] P. Scherk, “On the fundamental theorem of affine geometry”, Canad. Math. Bull., 5 (1962), 67–69 | MR | Zbl
[6] S. E. Schmidt, Grundlegungen zu einer allgemeinen affinen Geometrie, Birkhaüser Verlag, Basel, 1995 | MR | Zbl
[7] P. M. Cohn, Free rings and their relations, London Mathematical Society Monographs, 2, Academic Press, Inc., London–New York, 1971 | MR | Zbl
[8] T. M. Gelashvili, A. A. Lashkhi, “Coset lattices and the fundamental theorem of affine geometry for Lie algebras”, Proc. A. Razmadze Math. Inst., 119 (1999), 43–58 | MR | Zbl
[9] S. E. Schmidt, S. Weller, “Fundamentalsatz für affine Räume über Moduln”, Results Math., 30:1–2 (1996), 151–159 | MR | Zbl