Affine Geometry of Modules over a Ring with Invariant Basis Number
Matematičeskie zametki, Tome 82 (2007) no. 6, pp. 838-849
Voir la notice de l'article provenant de la source Math-Net.Ru
The fundamental theorem of affine geometry over rings with invariant basis numbers is considered.
Keywords:
fundamental theorem of affine geometry, invariant basis number, module over an $\operatorname{IB}$-ring, projective geometry, complete lattice, collineation.
@article{MZM_2007_82_6_a4,
author = {A. A. Lashkhi and T. G. Kvirikashvili},
title = {Affine {Geometry} of {Modules} over a {Ring} with {Invariant} {Basis} {Number}},
journal = {Matemati\v{c}eskie zametki},
pages = {838--849},
publisher = {mathdoc},
volume = {82},
number = {6},
year = {2007},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_6_a4/}
}
A. A. Lashkhi; T. G. Kvirikashvili. Affine Geometry of Modules over a Ring with Invariant Basis Number. Matematičeskie zametki, Tome 82 (2007) no. 6, pp. 838-849. http://geodesic.mathdoc.fr/item/MZM_2007_82_6_a4/