Asymptotics of the Number of Repetition-Free Boolean Functions in the Elementary Basis
Matematičeskie zametki, Tome 82 (2007) no. 6, pp. 822-828
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we obtain an asymptotic approximation of the number $K_n$ of repetition-free Boolean functions of $n$ variables in the elementary basis $\{\,\vee,-\}$ as $n\to\infty$ with relative error $O(1/\sqrt n\,)$. As a consequence, we verify conjectures on the existence of constants $\delta$ and $\alpha$ such that
$$
K_n\sim\delta\cdot\alpha^{n-1}\cdot(2n-3)!!,
$$
and obtain these constants.
Keywords:
repetition-free Boolean function, Euler number, Stirling number of the second kind, improper integral, two-pole serial set.
@article{MZM_2007_82_6_a2,
author = {O. V. Zubkov},
title = {Asymptotics of the {Number} of {Repetition-Free} {Boolean} {Functions} in the {Elementary} {Basis}},
journal = {Matemati\v{c}eskie zametki},
pages = {822--828},
publisher = {mathdoc},
volume = {82},
number = {6},
year = {2007},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_6_a2/}
}
O. V. Zubkov. Asymptotics of the Number of Repetition-Free Boolean Functions in the Elementary Basis. Matematičeskie zametki, Tome 82 (2007) no. 6, pp. 822-828. http://geodesic.mathdoc.fr/item/MZM_2007_82_6_a2/