Some Remarks on Arithmetical Properties of Recursive Sequences on Elliptic Curves over a Finite Field
Matematičeskie zametki, Tome 82 (2007) no. 6, pp. 926-933.

Voir la notice de l'article provenant de la source Math-Net.Ru

In connection with problems of information theory, we study arithmetical progressions constructed at the points of elliptic curves over a finite field. For certain types of such curves, we establish the distribution of the quadratic residues at the $x$-coordinates of the sequence of points corresponding to progressions if the elliptic curves is defined over a simple field. A description of the set of all progressions on elliptic curves over a finite field is also given.
Keywords: Weierstrass normal form, elliptic curve, arithmetical progression, finite field, generator of pseudorandom numbers, Sylow subgroup.
@article{MZM_2007_82_6_a12,
     author = {V. E. Tarakanov},
     title = {Some {Remarks} on {Arithmetical} {Properties} of {Recursive} {Sequences} on {Elliptic} {Curves} over a {Finite} {Field}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {926--933},
     publisher = {mathdoc},
     volume = {82},
     number = {6},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_6_a12/}
}
TY  - JOUR
AU  - V. E. Tarakanov
TI  - Some Remarks on Arithmetical Properties of Recursive Sequences on Elliptic Curves over a Finite Field
JO  - Matematičeskie zametki
PY  - 2007
SP  - 926
EP  - 933
VL  - 82
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_82_6_a12/
LA  - ru
ID  - MZM_2007_82_6_a12
ER  - 
%0 Journal Article
%A V. E. Tarakanov
%T Some Remarks on Arithmetical Properties of Recursive Sequences on Elliptic Curves over a Finite Field
%J Matematičeskie zametki
%D 2007
%P 926-933
%V 82
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_82_6_a12/
%G ru
%F MZM_2007_82_6_a12
V. E. Tarakanov. Some Remarks on Arithmetical Properties of Recursive Sequences on Elliptic Curves over a Finite Field. Matematičeskie zametki, Tome 82 (2007) no. 6, pp. 926-933. http://geodesic.mathdoc.fr/item/MZM_2007_82_6_a12/

[1] G. Gong, T. Berson, D. Stinson, “Elliptic curve pseudorandom sequences generator”, Selected Areas in Cryptography (Kingston, ON, 1999), Lecture Notes in Comput. Sci., 1758, Springer, Berlin, 2000, 34–48 | MR | Zbl

[2] G. Gong, C. Lam, “Linear recursive sequences over elliptic curves”, Sequences and Their Applications (Bergen, 2001), Discrete Math. Theor. Comput. Sci. (Lond.), Springer, London, 2002, 182–196 | MR | Zbl

[3] C. P. Xing, “Constructions of sequences from algebraic curves over finite fields”, Sequences and Their Applications (Bergen, 2001), Discrete Math. Theor. Comput. Sci. (Lond.), Springer, London, 2002, 88–100 | MR | Zbl

[4] N. Koblits, Kurs teorii chisel i kriptografii, TVP, M., 2001 | MR | Zbl

[5] V. E. Tarakanov, “Lineinye rekurrentnye posledovatelnosti na ellipticheskikh krivykh i ikh primenenie v kriptografii”, Trudy po diskretnoi matematike, t. 9, Fizmatlit, M., 2006, 340–356

[6] I. R. Shafarevich, Osnovy algebraicheskoi geometrii, Nauka, M., 1972 | MR | Zbl

[7] J. H. Silverman, J. Tate, Rational Points on Elliptic Curves, Undergrad. Texts Math., Springer-Verlag, New York, 1992 | MR | Zbl

[8] J. H. Silverman, The Arithmetic of Elliptic Curves, Grad. Texts in Math., 106, Springer-Verlag, New York, 1986 | MR | Zbl

[9] V. E. Tarakanov, “Svoistva delimosti tochek ellipticheskikh krivykh nad konechnym polem”, Trudy po diskretnoi matematike, t. 4, Fizmatlit, M., 2001, 243–258

[10] R. Schoof, “Nonsingular plane curves over finite fields”, J. Combin. Theory Ser. A, 46:2 (1987), 183–211 | DOI | MR | Zbl

[11] J. Miret, R. Moreno, A. Rao, M. Valis, “Determining the $2$-Sylow subgroup of an elliptic curve over a finite field”, Math. Comp., 74:249 (2005), 411–427 | DOI | MR | Zbl