Tensor Products of Algebras and Their Applications to the Construction of Anosov Diffeomorphisms
Matematičeskie zametki, Tome 82 (2007) no. 6, pp. 811-821.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we develop algebraic approaches to the construction of Anosov diffeomorphisms on compact manifolds. Two mutually dual constructions are described, which provide numerous new examples of Anosov diffeomorphisms on nilmanifolds. The basis of the constructions is the operation of tensor multiplication of Lie algebras by appropriate finite-dimensional associative-commutative algebras. Several examples illustrating the general method are given.
Keywords: Anosov diffeomorphism, nilpotent Lie group, hyperbolic nilpotent Lie group, nilmanifold, associative-commutative algebra.
@article{MZM_2007_82_6_a1,
     author = {V. V. Gorbatsevich},
     title = {Tensor {Products} of {Algebras} and {Their} {Applications} to the {Construction} of {Anosov} {Diffeomorphisms}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {811--821},
     publisher = {mathdoc},
     volume = {82},
     number = {6},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_6_a1/}
}
TY  - JOUR
AU  - V. V. Gorbatsevich
TI  - Tensor Products of Algebras and Their Applications to the Construction of Anosov Diffeomorphisms
JO  - Matematičeskie zametki
PY  - 2007
SP  - 811
EP  - 821
VL  - 82
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_82_6_a1/
LA  - ru
ID  - MZM_2007_82_6_a1
ER  - 
%0 Journal Article
%A V. V. Gorbatsevich
%T Tensor Products of Algebras and Their Applications to the Construction of Anosov Diffeomorphisms
%J Matematičeskie zametki
%D 2007
%P 811-821
%V 82
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_82_6_a1/
%G ru
%F MZM_2007_82_6_a1
V. V. Gorbatsevich. Tensor Products of Algebras and Their Applications to the Construction of Anosov Diffeomorphisms. Matematičeskie zametki, Tome 82 (2007) no. 6, pp. 811-821. http://geodesic.mathdoc.fr/item/MZM_2007_82_6_a1/

[1] V. V. Gorbatsevich, “Ob algebraicheskikh diffeomorfizmakh Anosova na nilmnogoobraziyakh”, Sib. matem. zhurn., 45:5 (2004), 995–1021 | MR | Zbl

[2] S. Dani, “Nilmanifolds with Anosov automorphism”, J. London Math. Soc. (2), 18:3 (1978), 553–559 | DOI | MR | Zbl

[3] K. Dekimpe, “Hyperbolic automorphisms and Anosov diffeomorphisms on nilmanifolds”, Trans. Amer. Math. Soc., 353:7 (2001), 2859–2877 | DOI | MR | Zbl

[4] B. Klopsch, Strongly hyperbolic elements in arithmetic subgroups of $SL_n(\mathbb R)$, , 2004 www.mth.uea.ac.uk/maths/pure-seminars-old.html

[5] J. Lauret, Examples of Anosov diffeomorphisms, , 2002 arXiv: math.DS/0203126 | MR

[6] W. Malfait, “Anosov diffeomophisms on nilmanifolds of dimension at most six”, Geom. Dedicata, 79:3 (2000), 291–298 | DOI | MR | Zbl

[7] J. Lauret, C. Will, Anosov diffeomorphisms on nilmanifolds up to dimension $8$, , 2004 arXiv: math.DS/0406199v.2

[8] S. Smale, “Differentiable dynamical systems”, Bull. Amer. Math. Soc., 73:6 (1967), 747–817 | DOI | MR | Zbl

[9] V. V. Gorbatsevich, “Antikommutativnye konechnomernye algebry pervykh trekh urovnei slozhnosti”, Algebra i analiz, 5:3 (1993), 100–118 | MR | Zbl

[10] Y. Benoist, “La partie semi-simple de l'algèbre des derivations d'une algèbre de Lie nilpotente”, C. R. Acad. Sci. Paris Sèr. I Math., 307:18 (1988), 901–904 | MR | Zbl

[11] V. V. Vishnevskii, A. P. Shirokov, V. V. Shurygin, Prostranstva nad algebrami, Izd-vo Kazanskogo un-ta, Kazan, 1985 | MR | Zbl

[12] V. V. Trofimov, A. T. Fomenko, Algebra i geometriya integriruemykh gamiltonovykh differentsialnykh uravnenii, Faktorial; Prosperus, M., 1995 | MR | Zbl

[13] R. Pirs, Assotsiativnye algebry, Mir, M., 1986 | MR | Zbl

[14] V. V. Drozd, Yu. A. Kirichenko, Konechnomernye algeby, Vischa shkola, Kiev, 1980 | MR | Zbl

[15] V. Astrakhantsev, “Isotypic Lie algebras”, Differential Geometry and its Applications (Dubrovnik, 1988), Univ. Novi Sad, Novi Sad, 1989, 11–14 | MR | Zbl

[16] R. Pollack, “Algebras and their automorphisms”, Comm. Algebra, 17:8 (1989), 1843–1866 | DOI | MR | Zbl

[17] V. I. Arnold, A. N. Varchenko, S. M. Gusein-Zade, Osobennosti differentsiruemykh otobrazhenii: Klassifikatsiya kriticheskikh tochek, kaustik i volnovykh frontov, Nauka, M., 1982 | MR | Zbl