Mots-clés : algebraic polynomial, Hölder's inequality, $L_p$-norm
@article{MZM_2007_82_6_a0,
author = {P. A. Borodin},
title = {Estimates of the {Distances} to {Direct} {Lines} and {Rays} from the {Poles} of {Simplest} {Fractions} {Bounded} in the {Norm} of~$L_p$ on {These} {Sets}},
journal = {Matemati\v{c}eskie zametki},
pages = {803--810},
year = {2007},
volume = {82},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_6_a0/}
}
TY - JOUR AU - P. A. Borodin TI - Estimates of the Distances to Direct Lines and Rays from the Poles of Simplest Fractions Bounded in the Norm of $L_p$ on These Sets JO - Matematičeskie zametki PY - 2007 SP - 803 EP - 810 VL - 82 IS - 6 UR - http://geodesic.mathdoc.fr/item/MZM_2007_82_6_a0/ LA - ru ID - MZM_2007_82_6_a0 ER -
%0 Journal Article %A P. A. Borodin %T Estimates of the Distances to Direct Lines and Rays from the Poles of Simplest Fractions Bounded in the Norm of $L_p$ on These Sets %J Matematičeskie zametki %D 2007 %P 803-810 %V 82 %N 6 %U http://geodesic.mathdoc.fr/item/MZM_2007_82_6_a0/ %G ru %F MZM_2007_82_6_a0
P. A. Borodin. Estimates of the Distances to Direct Lines and Rays from the Poles of Simplest Fractions Bounded in the Norm of $L_p$ on These Sets. Matematičeskie zametki, Tome 82 (2007) no. 6, pp. 803-810. http://geodesic.mathdoc.fr/item/MZM_2007_82_6_a0/
[1] V. I. Danchenko, “Otsenki rasstoyanii ot polyusov logarifmicheskikh proizvodnykh do pryamykh i okruzhnostei”, Matem. sb., 185:8 (1994), 63–80 | MR | Zbl
[2] P. A. Borodin, O. N. Kosukhin, “O priblizhenii naiprosteishimi drobyami na deistvitelnoi osi”, Vestn. Mosk. un-ta. Ser. 1. Matem., Mekh., 2005, no. 1, 3–8 | MR | Zbl
[3] Dzh. Garnett, Ogranichennye analiticheskie funktsii, Mir, M., 1984 | MR | Zbl
[4] M. A. Evgrafov, Yu. V. Sidorov, M. V. Fedoryuk, M. I. Shabunin, K. A. Bezhanov, Sbornik zadach po teorii analiticheskikh funktsii, ed. M. A. Evgrafov, Nauka, M., 1969 | MR | Zbl
[5] Matematicheskaya entsiklopediya, t. 1, M., 1977
[6] V. I. Danchenko, D. Ya. Danchenko, “O ravnomernom priblizhenii logarifmicheskimi proizvodnymi mnogochlenov”, Teoriya funktsii, ee prilozheniya i smezhnye voprosy, Tezisy dokl. shkoly-konferentsii, Izd-vo Kazan. un-ta, Kazan, 1999, 74–79
[7] V. I. Danchenko, D. Ya. Danchenko, “O priblizhenii naiprosteishimi drobyami”, Matem. zametki, 70:4 (2001), 553–559 | MR | Zbl
[8] V. I. Danchenko, “Otsenki proizvodnykh naiprosteishikh drobei i drugie voprosy”, Matem. sb., 197:4 (2006), 33–52 | MR