Estimates of the Distances to Direct Lines and Rays from the Poles of Simplest Fractions Bounded in the Norm of~$L_p$ on These Sets
Matematičeskie zametki, Tome 82 (2007) no. 6, pp. 803-810.

Voir la notice de l'article provenant de la source Math-Net.Ru

For each $p>1$, we obtain a lower bound for the distances to the real axis from the poles of simplest fractions (i.e., logarithmic derivatives of polynomials) bounded by 1 in the norm of $L_p$ on this axis; this estimate improves the first estimate of such kind derived by Danchenko in 1994. For $p=2$, the estimate turns out to be sharp. Similar estimates are obtained for the distances from the poles of simplest fractions to the vertices of angles and rays.
Keywords: simplest fraction, logarithmic derivative, rational function, Euler beta function, Hölder's inequality, Hardy space.
Mots-clés : algebraic polynomial, $L_p$-norm
@article{MZM_2007_82_6_a0,
     author = {P. A. Borodin},
     title = {Estimates of the {Distances} to {Direct} {Lines} and {Rays} from the {Poles} of {Simplest} {Fractions} {Bounded} in the {Norm} of~$L_p$ on {These} {Sets}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {803--810},
     publisher = {mathdoc},
     volume = {82},
     number = {6},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_6_a0/}
}
TY  - JOUR
AU  - P. A. Borodin
TI  - Estimates of the Distances to Direct Lines and Rays from the Poles of Simplest Fractions Bounded in the Norm of~$L_p$ on These Sets
JO  - Matematičeskie zametki
PY  - 2007
SP  - 803
EP  - 810
VL  - 82
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_82_6_a0/
LA  - ru
ID  - MZM_2007_82_6_a0
ER  - 
%0 Journal Article
%A P. A. Borodin
%T Estimates of the Distances to Direct Lines and Rays from the Poles of Simplest Fractions Bounded in the Norm of~$L_p$ on These Sets
%J Matematičeskie zametki
%D 2007
%P 803-810
%V 82
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_82_6_a0/
%G ru
%F MZM_2007_82_6_a0
P. A. Borodin. Estimates of the Distances to Direct Lines and Rays from the Poles of Simplest Fractions Bounded in the Norm of~$L_p$ on These Sets. Matematičeskie zametki, Tome 82 (2007) no. 6, pp. 803-810. http://geodesic.mathdoc.fr/item/MZM_2007_82_6_a0/

[1] V. I. Danchenko, “Otsenki rasstoyanii ot polyusov logarifmicheskikh proizvodnykh do pryamykh i okruzhnostei”, Matem. sb., 185:8 (1994), 63–80 | MR | Zbl

[2] P. A. Borodin, O. N. Kosukhin, “O priblizhenii naiprosteishimi drobyami na deistvitelnoi osi”, Vestn. Mosk. un-ta. Ser. 1. Matem., Mekh., 2005, no. 1, 3–8 | MR | Zbl

[3] Dzh. Garnett, Ogranichennye analiticheskie funktsii, Mir, M., 1984 | MR | Zbl

[4] M. A. Evgrafov, Yu. V. Sidorov, M. V. Fedoryuk, M. I. Shabunin, K. A. Bezhanov, Sbornik zadach po teorii analiticheskikh funktsii, ed. M. A. Evgrafov, Nauka, M., 1969 | MR | Zbl

[5] Matematicheskaya entsiklopediya, t. 1, M., 1977

[6] V. I. Danchenko, D. Ya. Danchenko, “O ravnomernom priblizhenii logarifmicheskimi proizvodnymi mnogochlenov”, Teoriya funktsii, ee prilozheniya i smezhnye voprosy, Tezisy dokl. shkoly-konferentsii, Izd-vo Kazan. un-ta, Kazan, 1999, 74–79

[7] V. I. Danchenko, D. Ya. Danchenko, “O priblizhenii naiprosteishimi drobyami”, Matem. zametki, 70:4 (2001), 553–559 | MR | Zbl

[8] V. I. Danchenko, “Otsenki proizvodnykh naiprosteishikh drobei i drugie voprosy”, Matem. sb., 197:4 (2006), 33–52 | MR