Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2007_82_5_a9, author = {N. V. Timofeeva}, title = {A {Compactification} of the {Moduli} {Variety} of {Stable} {Vector} {2-Bundles} on a {Surface} in the {Hilbert} {Scheme}}, journal = {Matemati\v{c}eskie zametki}, pages = {756--769}, publisher = {mathdoc}, volume = {82}, number = {5}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_5_a9/} }
TY - JOUR AU - N. V. Timofeeva TI - A Compactification of the Moduli Variety of Stable Vector 2-Bundles on a Surface in the Hilbert Scheme JO - Matematičeskie zametki PY - 2007 SP - 756 EP - 769 VL - 82 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2007_82_5_a9/ LA - ru ID - MZM_2007_82_5_a9 ER -
N. V. Timofeeva. A Compactification of the Moduli Variety of Stable Vector 2-Bundles on a Surface in the Hilbert Scheme. Matematičeskie zametki, Tome 82 (2007) no. 5, pp. 756-769. http://geodesic.mathdoc.fr/item/MZM_2007_82_5_a9/
[1] D. Gieseker, “On the moduli of vector bundles on an algebraic surface”, Ann. of Math. (2), 106:1 (1977), 45–60 | DOI | MR | Zbl
[2] D. Huybrechts, M. Lehn, Geometry of Moduli Spaces of Sheaves, Aspects of Mathematics, E31, Vieweg, Braunschweig, 1997 | MR | Zbl
[3] H. Hironaka, “Resolution of singularities of an algebraic variety over a field of characteristic zero. I.”, Ann. of Math. (2), 79:1 (1964), 109–203 | DOI | MR | Zbl
[4] A. S. Tikhomirov, “Mnogoobrazie polnykh par nulmernykh podskhem algebraicheskoi poverkhnosti”, Izv. RAN. Ser. matem., 61:6 (1997), 153–180 | MR | Zbl
[5] R. Khartskhorn, Algebraicheskaya geometriya, Mir, M., 1981 | MR | Zbl
[6] R. Lazarsfeld, Positivity in Algebraic Geometry. I., Classical setting: line bundles and linear series, Ergebnisse der Mathematik und Ihrer Grenzgebiete. 3 Folge A Series of Modern Surveys in Mathematics, 48, Springer-Verlag, Berlin, 2004 | MR | Zbl
[7] U. Fulton, Teoriya peresechenii, Mir, M., 1989 | MR | Zbl
[8] R. Godeman, Algebraicheskaya topologiya i teoriya puchkov, IL, M., 1961 | MR | Zbl