Extremal Problems for Numerical Series
Matematičeskie zametki, Tome 82 (2007) no. 5, pp. 736-755.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider extremal problems for numerical positive series. The terms of these series are pairwise products of the elements of two sequences, one of which is fixed and the other varies within a given set of sequences. We obtain exact solutions for a number of such problems. As one of the possible applications of the results obtained, we find solutions of some extremal problems related to best $n$-term approximations of periodic functions.
Keywords: numerical series, extremal problem for numerical series, best $n$-term approximation of periodic functions.
@article{MZM_2007_82_5_a8,
     author = {A. I. Stepanets},
     title = {Extremal {Problems} for {Numerical} {Series}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {736--755},
     publisher = {mathdoc},
     volume = {82},
     number = {5},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_5_a8/}
}
TY  - JOUR
AU  - A. I. Stepanets
TI  - Extremal Problems for Numerical Series
JO  - Matematičeskie zametki
PY  - 2007
SP  - 736
EP  - 755
VL  - 82
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_82_5_a8/
LA  - ru
ID  - MZM_2007_82_5_a8
ER  - 
%0 Journal Article
%A A. I. Stepanets
%T Extremal Problems for Numerical Series
%J Matematičeskie zametki
%D 2007
%P 736-755
%V 82
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_82_5_a8/
%G ru
%F MZM_2007_82_5_a8
A. I. Stepanets. Extremal Problems for Numerical Series. Matematičeskie zametki, Tome 82 (2007) no. 5, pp. 736-755. http://geodesic.mathdoc.fr/item/MZM_2007_82_5_a8/

[1] A. I. Stepanets, Approksimatsionnye kharakteristiki prostranstv $S^p_\varphi$, Preprint No 2001.2, Institut matematiki NAN Ukrainy, Kiev, 2001 | MR | Zbl

[2] A. I. Stepanets, “Approksimatsionnye kharakteristiki prostranstv $S^p_\varphi$”, Ukr. matem. zhurn., 53:3 (2001), 392–416 | MR | Zbl

[3] A. I. Stepanets, “Approksimatsionnye kharakteristiki prostranstv $S^p_\varphi$ v raznykh metrikakh”, Ukr. matem. zhurn., 53:8 (2001), 1121–1146 | MR | Zbl

[4] A. I. Stepanets, A. S. Serdyuk, “Pryamye i obratnye teoremy teorii priblizhenii funktsii v prostranstve $S^p$”, Ukr. matem. zhurn., 54:1 (2002), 106–124 | MR | Zbl

[5] A. I. Stepanets, Metody teorii priblizhenii, Trudy Instituta matematiki NAN Ukrainy, 40, In-t matematiki NAN Ukrainy, Kiev, 2002

[6] A. I. Stepanets, V. I. Rukasov, “Prostranstva $S^p$ s nesimmetrichnoi metrikoi”, Ukr. matem. zhurn., 55:2 (2003), 264–277 | MR | Zbl

[7] A. I. Stepanets, V. I. Rukasov, “Nailuchshie “sploshnye” $n$-chlennye priblizheniya v prostranstvakh $S^p_\varphi$”, Ukr. matem. zhurn., 55:5 (2003), 663–670 | MR | Zbl

[8] A. I. Stepanets, A. L. Shidlich, “Nailuchshie $n$-chlennye priblizheniya $\Lambda$-metodami v prostranstvakh $S^p_\varphi$”, Ukr. matem. zhurn., 55:8 (2003), 1107–1126 | MR | Zbl

[9] A. I. Stepanets, “Ekstremalnye zadachi teorii priblizhenii v lineinykh prostranstvakh”, Ukr. matem. zhurn., 55:10 (2003), 1378–1409 | MR | Zbl

[10] A. I. Stepanets, “Nailuchshie priblizheniya $q$-ellipsoidov v prostranstvakh $S^{p,\mu}_\varphi$”, Ukr. matem. zhurn., 56:10 (2004), 1378–1383 | MR | Zbl

[11] A. S. Serdyuk, “Poperechniki v prostori $S^p$ klasiv funktsii, scho oznachayutsya modulyami neperervnosti їkh $\psi$-pokhidnikh”, Ekstremalni zadachi teoriї funktsii ta sumizhni pitannya, Pratsi Institutu matematiki NAN Ukraїni, 46, In-t matematiki NAN Ukraїni, Kiїv, 2003, 229–248 | MR | Zbl

[12] S. B. Vakarchuk, “Neravenstvo tipa Dzheksona i tochnye znacheniya poperechnikov klassov funktsii v prostranstvakh $S^p$, $1\le p\infty$”, Ukr. matem. zhurn., 56:5 (2004), 595–605 | MR | Zbl

[13] S. B. Vakarchuk, “O nekotorykh ekstremalnykh zadachakh teorii approksimatsii v prostranstvakh $S^p$, ($1\le p\infty$)”, Sovremennye metody teorii funtsii i smezhnye problemy (Voronezh, 26 yanvarya–2 fevralya, 2003 g.), Voronezh. un-t, Voronezh, 2003, 47–48

[14] V. I. Rukasov, “Nailuchshie $n$-chlennye priblizheniya v prostranstvakh s nesimmetrichnoi metrikoi”, Ukr. matem. zhurn., 55:6 (2003), 806–816 | MR | Zbl

[15] A. I. Stepanets, A. L. Shidlich, “Ob odnoi ekstremalnoi zadache dlya chislovykh ryadov”, Ukr. matem. zhurn., 57:12 (2005), 1677–1683 | MR | Zbl

[16] S. B. Stechkin, “Ob absolyutnoi skhodimosti ortogonalnykh ryadov”, Dokl. AN SSSR, 102:1 (1955), 37–40 | Zbl

[17] M. D. Sterlin, “Tochnye postoyannye v obratnykh teoremakh teorii priblizhenii”, Dokl. AN SSSR, 202:3 (1972), 545–547 | MR | Zbl