Operations on Approximatively Compact Sets
Matematičeskie zametki, Tome 82 (2007) no. 5, pp. 729-735.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, the problem of preserving the property of approximative compactness under diverse operations is considered. In an arbitrary uniformly convex separable space, we construct an example of two approximatively compact sets whose intersection is not approximatively compact. An example of two linear approximatively compact sets for which the closure of their algebraic sum is not approximatively compact is constructed. In an arbitrary Banach space, we construct two nonlinear approximatively compact sets whose algebraic sum is closed but not approximatively compact. We also prove that any uniformly closed Banach space contains an approximatively compact cavity.
Keywords: Approximatively compact set, algebraic sum of sets, uniformly closed Banach space, Efimov–Stechkin space.
@article{MZM_2007_82_5_a7,
     author = {I. A. Pyatyshev},
     title = {Operations on {Approximatively} {Compact} {Sets}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {729--735},
     publisher = {mathdoc},
     volume = {82},
     number = {5},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_5_a7/}
}
TY  - JOUR
AU  - I. A. Pyatyshev
TI  - Operations on Approximatively Compact Sets
JO  - Matematičeskie zametki
PY  - 2007
SP  - 729
EP  - 735
VL  - 82
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_82_5_a7/
LA  - ru
ID  - MZM_2007_82_5_a7
ER  - 
%0 Journal Article
%A I. A. Pyatyshev
%T Operations on Approximatively Compact Sets
%J Matematičeskie zametki
%D 2007
%P 729-735
%V 82
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_82_5_a7/
%G ru
%F MZM_2007_82_5_a7
I. A. Pyatyshev. Operations on Approximatively Compact Sets. Matematičeskie zametki, Tome 82 (2007) no. 5, pp. 729-735. http://geodesic.mathdoc.fr/item/MZM_2007_82_5_a7/

[1] N. V. Efimov, S. B. Stechkin, “Approksimativnaya kompaktnost i chebyshevskie mnozhestva”, Dokl. AN SSSR, 140:3 (1961), 522–524 | MR | Zbl

[2] V. S. Balaganskii, L. P. Vlasov, “Problema vypuklosti chebyshevskikh mnozhestv”, UMN, 51:6 (1996), 125–188 | MR | Zbl

[3] P. A. Borodin, “Primer ogranichennogo approksimativno kompaktnogo mnozhestva, ne yavlyayuschegosya kompaktnym”, UMN, 49:4 (1994), 157–158 | MR | Zbl

[4] I. Singer, “Some remarks on approximative compactness”, Rev. Roumaine Math. Pures Appl., 9:2 (1964), 167–177 | MR | Zbl

[5] S. V. Konyagin, I. G. Tsarkov, “Prostranstva Efimova–Stechkina”, Vestn. Mosk. un-ta. Ser. 1. Matem., Mekh., 1986, no. 5, 20–27 | MR | Zbl

[6] A. A. Kirillov, A. D. Gvishiani, Teoremy i zadachi funktsionalnogo analiza, Nauka, M., 1988 | MR | Zbl

[7] P. A. Borodin, “O lineinosti operatora metricheskogo proektirovaniya na chebyshevskie podprostranstva v prostranstvakh $L_1$ i $C$”, Matem. zametki, 63:6 (1998), 812–820 | MR | Zbl

[8] A. N. Kolmogorov, S. V. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1989 | MR | Zbl