Convergence of the Krylov--Bogolyubov Procedure in Bowan's Example
Matematičeskie zametki, Tome 82 (2007) no. 5, pp. 678-689.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the behavior of time averages of a measure in Bowan's example: a vector field on the plane with two saddles joined by two separatrix connections. We present an explicit criterion for the convergence of averaged measures and describe the set of their partial limits. As a consequence, we show that, for a typical initial measure, its time averages do not converge.
Keywords: vector field in the plane, invariant measure, time average of a measure, Poincaré map, Krylov–Bogolyubov procedure, Bowan's example.
@article{MZM_2007_82_5_a3,
     author = {T. I. Golenishcheva-Kutuzova and V. A. Kleptsyn},
     title = {Convergence of the {Krylov--Bogolyubov} {Procedure} in {Bowan's} {Example}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {678--689},
     publisher = {mathdoc},
     volume = {82},
     number = {5},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_5_a3/}
}
TY  - JOUR
AU  - T. I. Golenishcheva-Kutuzova
AU  - V. A. Kleptsyn
TI  - Convergence of the Krylov--Bogolyubov Procedure in Bowan's Example
JO  - Matematičeskie zametki
PY  - 2007
SP  - 678
EP  - 689
VL  - 82
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_82_5_a3/
LA  - ru
ID  - MZM_2007_82_5_a3
ER  - 
%0 Journal Article
%A T. I. Golenishcheva-Kutuzova
%A V. A. Kleptsyn
%T Convergence of the Krylov--Bogolyubov Procedure in Bowan's Example
%J Matematičeskie zametki
%D 2007
%P 678-689
%V 82
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_82_5_a3/
%G ru
%F MZM_2007_82_5_a3
T. I. Golenishcheva-Kutuzova; V. A. Kleptsyn. Convergence of the Krylov--Bogolyubov Procedure in Bowan's Example. Matematičeskie zametki, Tome 82 (2007) no. 5, pp. 678-689. http://geodesic.mathdoc.fr/item/MZM_2007_82_5_a3/

[1] A. Gaunderdorfer, “Time averages for heteroclinic attractors”, SIAM J. Appl. Math., 52:5 (1992), 1476–1489 | DOI | MR | Zbl

[2] F. Takens, “Heteroclinic Attractors: time averages and moduli of topological conjugacy”, Bol. Soc. Brasil. Mat. (N.S.), 25:1 (1994), 107–120 | DOI | MR | Zbl

[3] T. Young, “Asymptotic measures and distributions of Birkhoff averages with respect to Lebesgue measure”, Discrete Contin. Dyn. Syst., 9:2 (2003), 359–378 | DOI | MR | Zbl

[4] Ya. G. Sinai, “Gibbsovskie mery v ergodicheskoi teorii”, UMN, 27:4 (1972), 21–64 | MR | Zbl

[5] D. Ruelle, “A measure associated with axiom-A attractors”, Amer. J. Math., 98:3 (1976), 619–654 | DOI | MR | Zbl

[6] R. Bowen, Equilibrium states and ergodic theory of Anosov diffeomorphisms, Lecture Notes in Math., 470, Springer, Berlin–New York, 1975 | MR | Zbl

[7] M. Blank, L. Bunimovich, “Multicomponent dynamical systems: SRB measures and phase transitions”, Nonlinearity, 16:1 (2003), 387–401 | DOI | MR | Zbl

[8] M. Misiurewicz, Ergodic natural measures, preprint, 2004 | MR

[9] E. Järvenpää, T. Tolonen, “Relations between natural and observable measures”, Nonlinearity, 18:2 (2005), 897–912 | DOI | MR | Zbl

[10] L.-S. Young, “What are SRB measures, and which dynamical systems have them?”, J. Stat. Phys., 108:5–6 (2002), 733–754 | DOI | MR | Zbl

[11] M. Misiurewicz, A. Zdunik, “Convergence of images of certain measures”, Statistical physics and dynamical systems (Köszeg, 1984), Progr. Phys., 10, Birkhäuser Boston, Boston, MA, 1985, 203–219 | MR | Zbl

[12] V. Kleptsyn, “An example of non-coincidence of minimal and statistical attractors”, Ergodic Theory Dynam. Systems, 26:3 (2006), 759–768 | DOI | MR | Zbl

[13] Yu. S. Ilyashenko, “Memuar Dyulaka “O predelnykh tsiklakh” i smezhnye voprosy lokalnoi teorii differentsialnykh uravnenii”, UMN, 40:6 (1985), 41–78 | MR