Convergence of the Krylov--Bogolyubov Procedure in Bowan's Example
Matematičeskie zametki, Tome 82 (2007) no. 5, pp. 678-689
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we study the behavior of time averages of a measure in Bowan's example: a vector field on the plane with two saddles joined by two separatrix connections. We present an explicit criterion for the convergence of averaged measures and describe the set of their partial limits. As a consequence, we show that, for a typical initial measure, its time averages do not converge.
Keywords:
vector field in the plane, invariant measure, time average of a measure, Poincaré map, Krylov–Bogolyubov procedure, Bowan's example.
@article{MZM_2007_82_5_a3,
author = {T. I. Golenishcheva-Kutuzova and V. A. Kleptsyn},
title = {Convergence of the {Krylov--Bogolyubov} {Procedure} in {Bowan's} {Example}},
journal = {Matemati\v{c}eskie zametki},
pages = {678--689},
publisher = {mathdoc},
volume = {82},
number = {5},
year = {2007},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_5_a3/}
}
TY - JOUR AU - T. I. Golenishcheva-Kutuzova AU - V. A. Kleptsyn TI - Convergence of the Krylov--Bogolyubov Procedure in Bowan's Example JO - Matematičeskie zametki PY - 2007 SP - 678 EP - 689 VL - 82 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2007_82_5_a3/ LA - ru ID - MZM_2007_82_5_a3 ER -
T. I. Golenishcheva-Kutuzova; V. A. Kleptsyn. Convergence of the Krylov--Bogolyubov Procedure in Bowan's Example. Matematičeskie zametki, Tome 82 (2007) no. 5, pp. 678-689. http://geodesic.mathdoc.fr/item/MZM_2007_82_5_a3/