On Invertible Contractions of Quotients Generated by a Differential Expression and by a Nonnegative Operator Function
Matematičeskie zametki, Tome 82 (2007) no. 5, pp. 652-664

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, we describe invertible contractions of the maximal quotient generated by a differential expression with bounded operator coefficients and by a nonnegative operator function. We show that the operators inverse to such contractions are integral operators and prove a criterion for such operators to be holomorphic. Using the results obtained, we describe the generalized resolvents of symmetric quotients.
Mots-clés : invertible contraction
Keywords: integral operator, holomorphic operator, operator function, Hilbert space, self-adjoint operator, Borel measurable function.
@article{MZM_2007_82_5_a1,
     author = {V. M. Bruk},
     title = {On {Invertible} {Contractions} of {Quotients} {Generated} by a {Differential} {Expression} and by a {Nonnegative} {Operator} {Function}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {652--664},
     publisher = {mathdoc},
     volume = {82},
     number = {5},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_5_a1/}
}
TY  - JOUR
AU  - V. M. Bruk
TI  - On Invertible Contractions of Quotients Generated by a Differential Expression and by a Nonnegative Operator Function
JO  - Matematičeskie zametki
PY  - 2007
SP  - 652
EP  - 664
VL  - 82
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_82_5_a1/
LA  - ru
ID  - MZM_2007_82_5_a1
ER  - 
%0 Journal Article
%A V. M. Bruk
%T On Invertible Contractions of Quotients Generated by a Differential Expression and by a Nonnegative Operator Function
%J Matematičeskie zametki
%D 2007
%P 652-664
%V 82
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_82_5_a1/
%G ru
%F MZM_2007_82_5_a1
V. M. Bruk. On Invertible Contractions of Quotients Generated by a Differential Expression and by a Nonnegative Operator Function. Matematičeskie zametki, Tome 82 (2007) no. 5, pp. 652-664. http://geodesic.mathdoc.fr/item/MZM_2007_82_5_a1/