On Invertible Contractions of Quotients Generated by a Differential Expression and by a Nonnegative Operator Function
Matematičeskie zametki, Tome 82 (2007) no. 5, pp. 652-664.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, we describe invertible contractions of the maximal quotient generated by a differential expression with bounded operator coefficients and by a nonnegative operator function. We show that the operators inverse to such contractions are integral operators and prove a criterion for such operators to be holomorphic. Using the results obtained, we describe the generalized resolvents of symmetric quotients.
Mots-clés : invertible contraction
Keywords: integral operator, holomorphic operator, operator function, Hilbert space, self-adjoint operator, Borel measurable function.
@article{MZM_2007_82_5_a1,
     author = {V. M. Bruk},
     title = {On {Invertible} {Contractions} of {Quotients} {Generated} by a {Differential} {Expression} and by a {Nonnegative} {Operator} {Function}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {652--664},
     publisher = {mathdoc},
     volume = {82},
     number = {5},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_5_a1/}
}
TY  - JOUR
AU  - V. M. Bruk
TI  - On Invertible Contractions of Quotients Generated by a Differential Expression and by a Nonnegative Operator Function
JO  - Matematičeskie zametki
PY  - 2007
SP  - 652
EP  - 664
VL  - 82
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_82_5_a1/
LA  - ru
ID  - MZM_2007_82_5_a1
ER  - 
%0 Journal Article
%A V. M. Bruk
%T On Invertible Contractions of Quotients Generated by a Differential Expression and by a Nonnegative Operator Function
%J Matematičeskie zametki
%D 2007
%P 652-664
%V 82
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_82_5_a1/
%G ru
%F MZM_2007_82_5_a1
V. M. Bruk. On Invertible Contractions of Quotients Generated by a Differential Expression and by a Nonnegative Operator Function. Matematičeskie zametki, Tome 82 (2007) no. 5, pp. 652-664. http://geodesic.mathdoc.fr/item/MZM_2007_82_5_a1/

[1] Yu. M. Berezanskii, Razlozhenie po sobstvennym funktsiyam samosopryazhennykh operatorov, Naukova Dumka, Kiev, 1965 | MR | Zbl

[2] V. I. Gorbachuk, M. L. Gorbachuk, Granichnye zadachi dlya differentsialno-operatornykh uravnenii, Naukova Dumka, Kiev, 1984 | MR | Zbl

[3] V. M. Bruk, “O lineinykh otnosheniyakh v prostranstve vektor-funktsii”, Matem. zametki, 24:4 (1978), 499–511 | MR | Zbl

[4] Zh.-L. Lions, E. Madzhenes, Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971 | MR | Zbl

[5] F. S. Rofe-Beketov, A. M. Kholkin, Spektralnyi analiz differentsialnykh operatorov, NAN Ukrainy, Mariupol, 2001

[6] E. A. Coddington, Extension theory of formally normal and symmetric subspaces, Mem. Amer. Math. Soc., 134, 1973, 1–80 | MR | Zbl

[7] A. G. Baskakov, K. I. Chernyshov, “Spektralnyi analiz lineinykh otnoshenii i vyrozhdennye polugruppy operatorov”, Matem. sb., 193:11 (2002), 3–42 | MR | Zbl

[8] Pleijel Ake, “A survey of spectral theory for pairs of ordinary differential operators”, Spectral theory and differential equations (Proc. Sympos., Dundee, 1974; dedicated to Konrad Jörgens), Lecture Notes in Math., 448, 1975, 256–272 | DOI | MR | Zbl

[9] V. M. Bruk, “O chisle lineino nezavisimykh, kvadratichno integriruemykh reshenii sistem differentsialnykh uravnenii”, Funktsion. analiz, 5, Ulyanovskii pedinstitut, Ulyanovsk, 1975, 25–33

[10] V. I. Kogan, F. S. Rofe-Beketov, “On square-integrable solutions of symmetric systems of differential equations of arbitrary order”, Proc. Roy. Soc. Edinburgh Sect. A, 74 (1976), 5–40 | MR | Zbl

[11] V. M. Bruk, “O kraevykh zadachakh, svyazannykh s golomorfnymi semeistvami operatorov”, Funktsion. analiz, 29, Ulyanovskii pedinstitut, Ulyanovsk, 1989, 32–42 | MR | Zbl

[12] T. Ya. Azizov, F. S. Iokhvidov, Osnovy teorii operatorov v prostranstvakh s indefinitnoi metrikoi, Nauka, M., 1986 | MR | Zbl

[13] A. V. Shtraus, “Obobschennye rezolventy simmetricheskikh operatorov”, Izv. AN SSSR. Ser. matem., 18:1 (1954), 51–86 | MR | Zbl

[14] A. Dijksma, H. S. V. de Snoo, “Self-adjoint extensions of symmetric subspaces”, Pacific J. Math., 54:1 (1974), 71–100 | MR | Zbl

[15] V. M. Bruk, “Ob obobschennykh rezolventakh simmetricheskikh otnoshenii v prostranstve s indefinitnoi metrikoi”, Funktsion. analiz, 22, Ulyanovskii pedinstitut, Ulyanovsk, 1984, 29–34 | MR | Zbl

[16] M. G. Krein, H. Langer, “Some propositions on analytic matrix functions related to the theory of operators in the space $\Pi_\kappa$”, Acta Sci. Math. (Szeged), 43:1–2 (1981), 181–205 | MR | Zbl

[17] S. J. Lee, “Formally self-adjont systems of differential operators”, J. Math. Anal. Appl., 55:1 (1976), 90–101 | DOI | MR | Zbl

[18] V. I. Khrabustovskii, “Spektralnyi analiz periodicheskikh sistem s vyrozhdayuschim vesom na osi i poluosi”, Teoriya funktsii, funktsion. analiz i ikh prilozh., 44 (1985), 122–133 | MR | Zbl