Homogenization of the Variational Inequality Corresponding to a Problem with Rapidly Varying Boundary Conditions
Matematičeskie zametki, Tome 82 (2007) no. 4, pp. 538-549
Cet article a éte moissonné depuis la source Math-Net.Ru
In the present paper, we investigate the asymptotic behavior of the solution of a variational inequality with one-sided constraints on $\varepsilon$-periodically located subsets $G_\varepsilon$ belonging to the boundary $\partial\Omega$ of the domain $\Omega\subset \mathbb R^3$. We construct a limit (homogenized) problem and prove the strong (in $H_1(\Omega)$) convergence of the solutions of the original inequality to the solution the limit nonlinear boundary-value problem as $\varepsilon\to0$ in the so-called critical case.
Keywords:
variational inequality, rapidly varying boundary conditions, boundary homogenization, strong convergence, domain with periodically bounded subsets.
@article{MZM_2007_82_4_a8,
author = {M. N. Zubova and T. A. Shaposhnikova},
title = {Homogenization of the {Variational} {Inequality} {Corresponding} to a {Problem} with {Rapidly} {Varying} {Boundary} {Conditions}},
journal = {Matemati\v{c}eskie zametki},
pages = {538--549},
year = {2007},
volume = {82},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_4_a8/}
}
TY - JOUR AU - M. N. Zubova AU - T. A. Shaposhnikova TI - Homogenization of the Variational Inequality Corresponding to a Problem with Rapidly Varying Boundary Conditions JO - Matematičeskie zametki PY - 2007 SP - 538 EP - 549 VL - 82 IS - 4 UR - http://geodesic.mathdoc.fr/item/MZM_2007_82_4_a8/ LA - ru ID - MZM_2007_82_4_a8 ER -
%0 Journal Article %A M. N. Zubova %A T. A. Shaposhnikova %T Homogenization of the Variational Inequality Corresponding to a Problem with Rapidly Varying Boundary Conditions %J Matematičeskie zametki %D 2007 %P 538-549 %V 82 %N 4 %U http://geodesic.mathdoc.fr/item/MZM_2007_82_4_a8/ %G ru %F MZM_2007_82_4_a8
M. N. Zubova; T. A. Shaposhnikova. Homogenization of the Variational Inequality Corresponding to a Problem with Rapidly Varying Boundary Conditions. Matematičeskie zametki, Tome 82 (2007) no. 4, pp. 538-549. http://geodesic.mathdoc.fr/item/MZM_2007_82_4_a8/
[1] A. Damlamian, Li Ta-Tsien, “Boundary homogenization for elliptic problems”, J. Math. Pures Appl. (9), 66:4 (1987), 351–361 | MR | Zbl
[2] G. A. Chechkin, “Usrednenie kraevykh zadach s singulyarnym vozmuscheniem granichnykh uslovii”, Matem. sb., 184:6 (1993), 99–150 | MR | Zbl
[3] R. R. Gadylshin, “O kraevoi zadache dlya laplasiana s bystro menyayuschimisya granichnymi usloviyami”, Dokl. RAN, 362:4 (1998), 456–459 | MR | Zbl
[4] D. I. Borisov, “On a model boundary value problem for Laplacian with frequently alternating type of boundary condition”, Asymptot. Anal., 35:1 (2003), 1–26 | MR | Zbl
[5] I. Ekland, R. Temam, Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979 | MR | Zbl