Approximation of Continuous Set-Valued Maps by Constant Set-Valued Maps with Image Balls
Matematičeskie zametki, Tome 82 (2007) no. 4, pp. 525-529.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that the problem of the best uniform approximation in the Hausdorff metric of a continuous set-valued map with finite-dimensional compact convex images by constant set-valued maps whose images are balls in some norm can be reduced to a visual geometric problem. The latter consists in constructing a spherical layer of minimal thickness which contains the complement of a compact convex set to a larger compact convex set.
Keywords: set-valued map, approximation of set-valued maps, Hausdorff metric, subdifferential, compact convex set.
@article{MZM_2007_82_4_a6,
     author = {S. I. Dudov and A. B. Konoplev},
     title = {Approximation of {Continuous} {Set-Valued} {Maps} by {Constant} {Set-Valued} {Maps} with {Image} {Balls}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {525--529},
     publisher = {mathdoc},
     volume = {82},
     number = {4},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_4_a6/}
}
TY  - JOUR
AU  - S. I. Dudov
AU  - A. B. Konoplev
TI  - Approximation of Continuous Set-Valued Maps by Constant Set-Valued Maps with Image Balls
JO  - Matematičeskie zametki
PY  - 2007
SP  - 525
EP  - 529
VL  - 82
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_82_4_a6/
LA  - ru
ID  - MZM_2007_82_4_a6
ER  - 
%0 Journal Article
%A S. I. Dudov
%A A. B. Konoplev
%T Approximation of Continuous Set-Valued Maps by Constant Set-Valued Maps with Image Balls
%J Matematičeskie zametki
%D 2007
%P 525-529
%V 82
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_82_4_a6/
%G ru
%F MZM_2007_82_4_a6
S. I. Dudov; A. B. Konoplev. Approximation of Continuous Set-Valued Maps by Constant Set-Valued Maps with Image Balls. Matematičeskie zametki, Tome 82 (2007) no. 4, pp. 525-529. http://geodesic.mathdoc.fr/item/MZM_2007_82_4_a6/

[1] M. S. Nikolskii, “Ob approksimatsii nepreryvnogo mnogoznachnogo otobrazheniya postoyannymi mnogoznachnymi otobrazheniyami”, Vestn. Mosk. un-ta. Ser. 15. Vychisl. matem. i kibernetika, 1990, no. 1, 76–80 | MR | Zbl

[2] B. N. Pshenichnyi, Vypuklyi analiz i ekstremalnye zadachi, Nauka, M., 1980 | MR | Zbl

[3] V. F. Demyanov, L. V. Vasilev, Nedifferentsiruemaya optimizatsiya, Nauka, M., 1981 | MR | Zbl

[4] S. I. Dudov, “Subdifferentsiruemost i superdifferentsiruemost funktsii rasstoyaniya”, Matem. zametki, 61:4 (1997), 530–542 | MR | Zbl

[5] S. I. Dudov, I. V. Zlatorunskaya, “Ravnomernaya otsenka vypuklogo kompakta sharom proizvolnoi normy”, Matem. sb., 191:10 (2000), 13–38 | MR | Zbl

[6] T. Bonnezen, V. Fenkhel, Teoriya vypuklykh tel, Fazis, M., 2002 | MR | Zbl

[7] M. S. Nikolskii, D. B. Silin, “O nailuchshem priblizhenii vypuklogo kompakta elementami addiala”, Optimalnoe upravlenie i differentsialnye uravneniya, Tr. MIAN, 211, 1995, 338–354 | MR | Zbl

[8] S. I. Dudov, “Ob otsenke granitsy vypuklogo kompakta sharovym sloem”, Izv. Sarat. un-ta. Novaya ser., 1:2 (2001), 64–75