Representation of the Group of Holomorphic Symmetries of a Real Germ in the Symmetry Group of Its Model Surface
Matematičeskie zametki, Tome 82 (2007) no. 4, pp. 515-518.

Voir la notice de l'article provenant de la source Math-Net.Ru

Local polynomial models of real submanifolds of complex space were constructed and studied in a series of papers. Among the main features of model surfaces, there is the property that the dimension of the local group of holomorphic symmetries of a germ does not exceed that of the same group of the tangent model surface of this germ. In the paper, this assertion is rendered much stronger; namely, it is proved that the connected component of the identity element in the symmetry group of a nondegenerate germ is isomorphic as a Lie group to a subgroup of the symmetry group of its tangent model surface.
Keywords: germ, holomorphic symmetry group
Mots-clés : tangent model surface, Lie group.
@article{MZM_2007_82_4_a4,
     author = {V. K. Beloshapka},
     title = {Representation of the {Group} of {Holomorphic} {Symmetries} of a {Real} {Germ} in the {Symmetry} {Group} of {Its} {Model} {Surface}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {515--518},
     publisher = {mathdoc},
     volume = {82},
     number = {4},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_4_a4/}
}
TY  - JOUR
AU  - V. K. Beloshapka
TI  - Representation of the Group of Holomorphic Symmetries of a Real Germ in the Symmetry Group of Its Model Surface
JO  - Matematičeskie zametki
PY  - 2007
SP  - 515
EP  - 518
VL  - 82
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_82_4_a4/
LA  - ru
ID  - MZM_2007_82_4_a4
ER  - 
%0 Journal Article
%A V. K. Beloshapka
%T Representation of the Group of Holomorphic Symmetries of a Real Germ in the Symmetry Group of Its Model Surface
%J Matematičeskie zametki
%D 2007
%P 515-518
%V 82
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_82_4_a4/
%G ru
%F MZM_2007_82_4_a4
V. K. Beloshapka. Representation of the Group of Holomorphic Symmetries of a Real Germ in the Symmetry Group of Its Model Surface. Matematičeskie zametki, Tome 82 (2007) no. 4, pp. 515-518. http://geodesic.mathdoc.fr/item/MZM_2007_82_4_a4/

[1] V. K. Beloshapka, “Veschestvennye podmnogoobraziya kompleksnogo prostranstva ikh polinomialnye modeli, avtomorfizmy i problemy klassifikatsii”, UMN, 57:1 (2002), 3–44 | MR | Zbl

[2] V. K. Beloshapka, “Universalnaya model veschestvennogo podmnogoobraziya”, Matem. zametki, 75:4 (2004), 507–522 | MR | Zbl

[3] M. S. Baouendi, L. P. Rothschild, J. Winkelmann, D. Zaitsev, “Lie group structures of diffeomorphisms and applications to CR manifolds”, Ann. Inst. Fourier (Grenoble), 54 (2004), 1279–1303 | MR | Zbl

[4] A. G. Vitushkin, “Golomorfnye otobrazheniya i geometriya poverkhnostei”, Sovremennye problemy matematiki. Fundamentalnye napravleniya, 7, VINITI, M., 1985, 167–226 | MR | Zbl

[5] R. V. Gammel, I. G. Kossovskii, “Obolochka golomorfnosti modelnoi poverkhnosti stepeni tri i fenomen “zhestkosti” ”, Kompleksnyi analiz i prilozheniya: Sbornik statei, Tr. MIAN, 253, 2006, 30–45 | MR