Mots-clés : tangent model surface, Lie group.
@article{MZM_2007_82_4_a4,
author = {V. K. Beloshapka},
title = {Representation of the {Group} of {Holomorphic} {Symmetries} of a {Real} {Germ} in the {Symmetry} {Group} of {Its} {Model} {Surface}},
journal = {Matemati\v{c}eskie zametki},
pages = {515--518},
year = {2007},
volume = {82},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_4_a4/}
}
TY - JOUR AU - V. K. Beloshapka TI - Representation of the Group of Holomorphic Symmetries of a Real Germ in the Symmetry Group of Its Model Surface JO - Matematičeskie zametki PY - 2007 SP - 515 EP - 518 VL - 82 IS - 4 UR - http://geodesic.mathdoc.fr/item/MZM_2007_82_4_a4/ LA - ru ID - MZM_2007_82_4_a4 ER -
V. K. Beloshapka. Representation of the Group of Holomorphic Symmetries of a Real Germ in the Symmetry Group of Its Model Surface. Matematičeskie zametki, Tome 82 (2007) no. 4, pp. 515-518. http://geodesic.mathdoc.fr/item/MZM_2007_82_4_a4/
[1] V. K. Beloshapka, “Veschestvennye podmnogoobraziya kompleksnogo prostranstva ikh polinomialnye modeli, avtomorfizmy i problemy klassifikatsii”, UMN, 57:1 (2002), 3–44 | MR | Zbl
[2] V. K. Beloshapka, “Universalnaya model veschestvennogo podmnogoobraziya”, Matem. zametki, 75:4 (2004), 507–522 | MR | Zbl
[3] M. S. Baouendi, L. P. Rothschild, J. Winkelmann, D. Zaitsev, “Lie group structures of diffeomorphisms and applications to CR manifolds”, Ann. Inst. Fourier (Grenoble), 54 (2004), 1279–1303 | MR | Zbl
[4] A. G. Vitushkin, “Golomorfnye otobrazheniya i geometriya poverkhnostei”, Sovremennye problemy matematiki. Fundamentalnye napravleniya, 7, VINITI, M., 1985, 167–226 | MR | Zbl
[5] R. V. Gammel, I. G. Kossovskii, “Obolochka golomorfnosti modelnoi poverkhnosti stepeni tri i fenomen “zhestkosti” ”, Kompleksnyi analiz i prilozheniya: Sbornik statei, Tr. MIAN, 253, 2006, 30–45 | MR