Relationship Between Symmetries of the Tzizeica Equation and the Novikov–Veselov Hierarchy
Matematičeskie zametki, Tome 82 (2007) no. 4, pp. 637-640
Cet article a éte moissonné depuis la source Math-Net.Ru
Mots-clés :
Tzizeica equation, Bloch solution, isospectral deformation
Keywords: Novikov–Veselov Hierarchy, Lagrangian manifolds, finite-gap spectrum, Schrödinger operator.
Keywords: Novikov–Veselov Hierarchy, Lagrangian manifolds, finite-gap spectrum, Schrödinger operator.
@article{MZM_2007_82_4_a18,
author = {A. E. Mironov},
title = {Relationship {Between} {Symmetries} of the {Tzizeica} {Equation} and the {Novikov{\textendash}Veselov} {Hierarchy}},
journal = {Matemati\v{c}eskie zametki},
pages = {637--640},
year = {2007},
volume = {82},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_4_a18/}
}
A. E. Mironov. Relationship Between Symmetries of the Tzizeica Equation and the Novikov–Veselov Hierarchy. Matematičeskie zametki, Tome 82 (2007) no. 4, pp. 637-640. http://geodesic.mathdoc.fr/item/MZM_2007_82_4_a18/
[1] A. V. Mikhailov, Physica D: Nonlinear Phenomena, 3:1–2 (1981), 73–117 | DOI | MR
[2] A. P. Veselov, S. P. Novikov, Dokl. AN SSSR, 279:1 (1984), 20–24 | MR | Zbl
[3] R. A. Sharipov, TMF, 87:1 (1991), 48–56 | MR | Zbl
[4] E. V. Ferapontov, Differential Geom. Appl., 11:2 (1999), 117–128 | DOI | MR | Zbl
[5] A. V. Zhiber, Simmetrii i integraly nelineinykh differentsialnykh uravnenii, Dis. dokt. fiz.-matem. nauk, Ufa, 1993
[6] V. V. Sokolov, A. B. Shabat, Funkts. analiz i ego pril., 14:2 (1980), 79–80 | MR | Zbl
[7] A. E. Mironov, Sib. elektron. matem. izvestiya, 1 (2004), 38–46 | MR | Zbl