On Polynomials of Best Approximation
Matematičeskie zametki, Tome 82 (2007) no. 4, pp. 631-636

Voir la notice de l'article provenant de la source Math-Net.Ru

In the space of continuous functions defined on the ball from $\mathbb R^n$, $n\ge2$, we study the set of algebraic polynomials of least deviation from zero. Its width and dimension are estimated.
Keywords: algebraic polynomial of least deviation from zero, Chebyshev polynomial, trigonometric polynomial, Bézout theorem
Mots-clés : orthogonal transformation.
@article{MZM_2007_82_4_a17,
     author = {V. A. Yudin},
     title = {On {Polynomials} of {Best} {Approximation}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {631--636},
     publisher = {mathdoc},
     volume = {82},
     number = {4},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_4_a17/}
}
TY  - JOUR
AU  - V. A. Yudin
TI  - On Polynomials of Best Approximation
JO  - Matematičeskie zametki
PY  - 2007
SP  - 631
EP  - 636
VL  - 82
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_82_4_a17/
LA  - ru
ID  - MZM_2007_82_4_a17
ER  - 
%0 Journal Article
%A V. A. Yudin
%T On Polynomials of Best Approximation
%J Matematičeskie zametki
%D 2007
%P 631-636
%V 82
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_82_4_a17/
%G ru
%F MZM_2007_82_4_a17
V. A. Yudin. On Polynomials of Best Approximation. Matematičeskie zametki, Tome 82 (2007) no. 4, pp. 631-636. http://geodesic.mathdoc.fr/item/MZM_2007_82_4_a17/