Estimate of the Concentration Function for a Class of Additive Functions
Matematičeskie zametki, Tome 82 (2007) no. 4, pp. 598-605.

Voir la notice de l'article provenant de la source Math-Net.Ru

We show how methods for estimating the concentration function of the sum of independent random variables can be used to obtain estimates of the concentration function for the values of additive functions under suitable conditions. Previously obtained estimates of the concentration function are consequences of the estimate obtained in the present paper for functions from of the class under consideration.
Keywords: arithmetic additive function, concentration function, Sylvester's criterion, characteristic function, measure, Euler gamma function, random variable.
@article{MZM_2007_82_4_a14,
     author = {M. B. Khripunova and A. A. Yudin},
     title = {Estimate of the {Concentration} {Function} for a {Class} of {Additive} {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {598--605},
     publisher = {mathdoc},
     volume = {82},
     number = {4},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_4_a14/}
}
TY  - JOUR
AU  - M. B. Khripunova
AU  - A. A. Yudin
TI  - Estimate of the Concentration Function for a Class of Additive Functions
JO  - Matematičeskie zametki
PY  - 2007
SP  - 598
EP  - 605
VL  - 82
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_82_4_a14/
LA  - ru
ID  - MZM_2007_82_4_a14
ER  - 
%0 Journal Article
%A M. B. Khripunova
%A A. A. Yudin
%T Estimate of the Concentration Function for a Class of Additive Functions
%J Matematičeskie zametki
%D 2007
%P 598-605
%V 82
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_82_4_a14/
%G ru
%F MZM_2007_82_4_a14
M. B. Khripunova; A. A. Yudin. Estimate of the Concentration Function for a Class of Additive Functions. Matematičeskie zametki, Tome 82 (2007) no. 4, pp. 598-605. http://geodesic.mathdoc.fr/item/MZM_2007_82_4_a14/

[1] G. Halasz, “Über die Mittelwerte multiplikativer zahlentheoretischer Funktionen”, Acta Math. Hungar., 19:3–4 (1968), 365–403 | DOI | MR | Zbl

[2] I. Ruzsa, “On the concentration of additive functions”, Acta Math. Hungar., 36:3–4 (1980), 215–232 | DOI | MR | Zbl

[3] B. V. Levin, A. A. Yudin, “Lokalnye predelnye teoremy dlya additivnykh arifmeticheskikh funktsii”, Acta Arith., 22 (1973), 233–247 | MR | Zbl

[4] I.-M. Deshouillers, G. A. Freiman, A. A. Yudin, “On bounds for the concentration function. I”, Structure Theory of Set Addition, Astérisque, 258, Soc. Math. France, Paris, 1999, 425–436 | MR | Zbl

[5] T. V. Arak, A. Yu. Zaitsev, Ravnomernye predelnye teoremy dlya summ nezavisimykh sluchainykh velichin, Tr. MIAN, 174, M., Nauka, 1986 | MR | Zbl

[6] L. P. Postnikova, A. A. Yudin, “O funktsii kontsentratsii”, Teoriya veroyatn. i ee primen., 22:2 (1977), 371–375 | MR | Zbl

[7] A. G. Postnikov, A. A. Yudin, “Ob otsenke funktsii kontsentratsii summy odinakovo raspredelennykh dvumernykh tselochislennykh nezavisimykh sluchainykh vektorov”, Teoriya veroyatn. i ee primen., 26:1 (1981), 156–160 | MR | Zbl

[8] M. Kneser, “Ein Satz über abelsche Gruppen mit Anwendungen auf die Geometrie der Zahlen”, Math. Z., 61:1 (1955), 429–434 | DOI | MR | Zbl

[9] G. A. Freiman, A. A. Yudin, The Interface between Probability Theory and Additive Number Theory (Local Limit Theorems and Structure Theory of Set Addition), Report 2-2003, Tel Aviv University School of Math. Tech., Tel Aviv, 2003 | MR

[10] B. B. Petrov, Predelnye teoremy dlya summ nezavisimykh sluchainykh velichin, Teoriya veroyatn. i matem. stat., 39, Nauka, M., 1987 | MR | Zbl