Algorithms for Finding Proper Essential Surfaces in 3-Manifolds
Matematičeskie zametki, Tome 82 (2007) no. 4, pp. 593-597.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we present an algorithm which, for a given compact orientable irreducible boundary irreducible 3-manifold $M$, verifies whether $M$ contains an essential orientable surface (possibly, with boundary), whose genus is at most $N$. The algorithm is based on Haken's theory of normal surfaces, and on a trick suggested by Jaco and consisting in estimating the mean length of boundary curves in an unknown essential surface of a given genus in the given manifold.
Keywords: irreducible 3-manifold, essential surface, boundary irreducible manifold, Euler characteristic
Mots-clés : triangulation.
@article{MZM_2007_82_4_a13,
     author = {E. A. Sbrodova},
     title = {Algorithms for {Finding} {Proper} {Essential} {Surfaces} in {3-Manifolds}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {593--597},
     publisher = {mathdoc},
     volume = {82},
     number = {4},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_4_a13/}
}
TY  - JOUR
AU  - E. A. Sbrodova
TI  - Algorithms for Finding Proper Essential Surfaces in 3-Manifolds
JO  - Matematičeskie zametki
PY  - 2007
SP  - 593
EP  - 597
VL  - 82
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_82_4_a13/
LA  - ru
ID  - MZM_2007_82_4_a13
ER  - 
%0 Journal Article
%A E. A. Sbrodova
%T Algorithms for Finding Proper Essential Surfaces in 3-Manifolds
%J Matematičeskie zametki
%D 2007
%P 593-597
%V 82
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_82_4_a13/
%G ru
%F MZM_2007_82_4_a13
E. A. Sbrodova. Algorithms for Finding Proper Essential Surfaces in 3-Manifolds. Matematičeskie zametki, Tome 82 (2007) no. 4, pp. 593-597. http://geodesic.mathdoc.fr/item/MZM_2007_82_4_a13/

[1] W. Haken, “Theorie der Normalflächen”, Acta Math., 105:3–4 (1961), 245–375 | DOI | MR | Zbl

[2] W. Jaco, U. Oertel, “An algorithm to decide if a $3$-manifold is a Haken manifold”, Topology, 23:2 (1984), 195–209 | DOI | MR | Zbl

[3] S. Matveev, Algorithmic Topology and Classification of $3$-Manifolds, Algorithms and Computation in Mathematics, 9, Springer-Verlag, Berlin, 2003 | MR | Zbl

[4] W. Jaco, J. H. Rubinstein, E. Sedgwick, Finding planar surfaces in knot- and link-manifolds, arXiv: math.GT/0608700

[5] E. A. Sbrodova, “Ploskie poverkhnosti v trekhmernykh mnogoobraziyakh”, Sib. elektron. matem. izv., 3 (2006), 451–463 | Zbl