Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2007_82_4_a10, author = {A. E. Mamontov}, title = {Existence of {Global} {Solutions} to {Multidimensional} {Equations} for {Bingham} {Fluids}}, journal = {Matemati\v{c}eskie zametki}, pages = {560--577}, publisher = {mathdoc}, volume = {82}, number = {4}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_4_a10/} }
A. E. Mamontov. Existence of Global Solutions to Multidimensional Equations for Bingham Fluids. Matematičeskie zametki, Tome 82 (2007) no. 4, pp. 560-577. http://geodesic.mathdoc.fr/item/MZM_2007_82_4_a10/
[1] E. C. Bingham, Fluidity and Plasticity, McGrew–Hill Book Co., New York, 1922
[2] W. Prager, Introduction to Mechanics of Continua, Introductions to Higher Mathematics, Ginn and Co., New York, 1961 | MR | Zbl
[3] Dzh. Serrin, Matematicheskie osnovy klassicheskoi mekhaniki zhidkosti, IL, M., 1963 | MR
[4] D. Prasad, H. K. Kytomaa, “Particle stress and viscous compaction during shear of dense suspensions”, Intern. J. of Multiphase Flow, 21:5 (1995), 775–785 | DOI | Zbl
[5] L. E. Malvern, Introduction to the Mechanics of a Continuous Medium, Prentice–Hall, Inc. Englewood Cliffs, New Jersey, 1969
[6] I. V. Basov, V. V. Shelukhin, “Generalized solutions to the equations of compressible Bingham flows”, ZAMM Z. Angew. Math. Mech., 79:3 (1999), 185–192 | 3.0.CO;2-N class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[7] V. V. Shelukhin, “Bingham viscoplastic as a limit of non-newtonian fluids”, J. Math. Fluid Mech., 4:2 (2002), 109–127 | DOI | MR | Zbl
[8] J. Málek, M. Růžička, V. V. Shelukhin, “Hershel–Bulkley fluids: existence and regularity of steady flows”, Math. Models Methods Appl. Sci., 15:12 (2005), 1845–1861 | DOI | MR | Zbl
[9] A. E. Mamontov, “O globalnoi razreshimosti mnogomernykh uravnenii Nave–Stoksa szhimaemoi nelineino vyazkoi zhidkosti. I”, Sib. matem. zhurn., 40:2 (1999), 408–420 | MR | Zbl
[10] A. E. Mamontov, “O globalnoi razreshimosti mnogomernykh uravnenii Nave–Stoksa szhimaemoi nelineino vyazkoi zhidkosti. II”, Sib. matem. zhurn., 40:3 (1999), 635–649 | MR | Zbl
[11] M. A. Krasnoselskii, Ya. B. Rutitskii, Vypuklye funktsii i prostranstva Orlicha, Sovremennye problemy matematiki, Fizmatgiz, M., 1958 | MR | Zbl
[12] A. E. Mamontov, “Otsenki globalnoi regulyarnosti dlya mnogomernykh uravnenii szhimaemoi nenyutonovskoi zhidkosti”, Matem. zametki, 68:3 (2000), 360–376 | MR | Zbl
[13] A. V. Kazhikhov, A. E. Mamontov, “Ob odnom klasse vypuklykh funktsii i tochnykh klassakh korrektnosti zadachi Koshi dlya uravneniya perenosa v prostranstvakh Orlicha”, Sib. matem. zhurn., 39:4 (1998), 831–850 | MR | Zbl
[14] Zh.-L. Lions, Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR | Zbl
[15] R. Rokafellar, Vypuklyi analiz, Mir, M., 1973 | MR | Zbl