Multipliers of Convergence in Norm of Series with Respect to Multiplicative Systems
Matematičeskie zametki, Tome 82 (2007) no. 4, pp. 483-494 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove analogs of the Telyakovskii–Pochuev criteria for multipliers of uniform convergence and of convergence in the integral metric for multiplicative systems with bounded generating sequence.
Mots-clés : multipliers of convergence in norm, multipliers of uniform convergence, Fourier–Stieltjes coefficients.
Keywords: multiplicative system, Walsh system, Borel measure
@article{MZM_2007_82_4_a0,
     author = {N. Yu. Agafonova and S. S. Volosivets},
     title = {Multipliers of {Convergence} in {Norm} of {Series} with {Respect} to {Multiplicative} {Systems}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {483--494},
     year = {2007},
     volume = {82},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_4_a0/}
}
TY  - JOUR
AU  - N. Yu. Agafonova
AU  - S. S. Volosivets
TI  - Multipliers of Convergence in Norm of Series with Respect to Multiplicative Systems
JO  - Matematičeskie zametki
PY  - 2007
SP  - 483
EP  - 494
VL  - 82
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_82_4_a0/
LA  - ru
ID  - MZM_2007_82_4_a0
ER  - 
%0 Journal Article
%A N. Yu. Agafonova
%A S. S. Volosivets
%T Multipliers of Convergence in Norm of Series with Respect to Multiplicative Systems
%J Matematičeskie zametki
%D 2007
%P 483-494
%V 82
%N 4
%U http://geodesic.mathdoc.fr/item/MZM_2007_82_4_a0/
%G ru
%F MZM_2007_82_4_a0
N. Yu. Agafonova; S. S. Volosivets. Multipliers of Convergence in Norm of Series with Respect to Multiplicative Systems. Matematičeskie zametki, Tome 82 (2007) no. 4, pp. 483-494. http://geodesic.mathdoc.fr/item/MZM_2007_82_4_a0/

[1] B. I. Golubov, A. V. Efimov, V. A. Skvortsov, Ryady i preobrazovaniya Uolsha, Teoriya i primeneniya, Nauka, M., 1987 | MR | Zbl

[2] G. N. Agaev, N. Ya. Vilenkin, G. M. Dzhafarli, A. I. Rubinshtein, Multiplikativnye sistemy funktsii i garmonicheskii analiz na nulmernykh gruppakh, Elm, Baku, 1981 | MR | Zbl

[3] C. Watari, “On generalized Walsh-Fourier series”, Tohoku Math. J. (2), 10:3 (1958), 211–241 | DOI | MR | Zbl

[4] F. Schipp, W. Wade, P. Simon, Walsh Series, An introduction to dyadic harmonic analysis, Akademiai Kiado, Budapest, 1990 | MR | Zbl

[5] S. Fridli, “Approximation by Vilenkin–Fourier sums”, Acta Math. Hungar., 47:1–2 (1986), 33–44 | DOI | MR | Zbl

[6] R. DeVore, “Multipliers of uniform convergence”, Enseign. Math. (2), 14:2 (1969), 175–188 | MR | Zbl

[7] S. A. Telyakovskii, “O mnozhitelyakh ravnomernoi skhodimosti ryadov Fure funktsii s zadannym modulem nepreryvnosti”, Matem. zametki, 10:1 (1971), 33–40 | MR | Zbl

[8] S. A. Telyakovskii, “Kvazivypuklye mnozhiteli ravnomernoi skhodimosti ryadov Fure s zadannym modulem nepreryvnosti”, Matem. zametki, 8:5 (1970), 619–623 | MR | Zbl

[9] G. Morgenthaler, “Walsh–Fourier series”, Trans. Amer. Math. Soc., 84:2 (1957), 472–507 | DOI | MR | Zbl

[10] V. R. Pochuev, “O mnozhitelyakh ravnomernoi skhodimosti i mnozhitelyakh ravnomernoi ogranichennosti chastnykh summ ryadov Fure”, Izv. vuzov. Ser. matem., 1977, no. 1, 74–81 | MR | Zbl

[11] M. Tomic, “Sur les facteurs de convergence des series de Fourier des fonctions continues”, Acad. Serbe Sci. Publ. Inst. Math., 8 (1955), 23–32 | MR | Zbl

[12] K. I. Oskolkov, “Neusilyaemost otsenki Lebega dlya priblizheniya funktsii s zadannym modulem nepreryvnosti summami Fure”, Sbornik statei. 1, Posv. akad. I. M. Vinogradovu k ego 80-letiyu, Tr. MIAN, 112, Nauka, M., 1971, 337–345 | MR | Zbl