Multipliers of Convergence in Norm of Series with Respect to Multiplicative Systems
Matematičeskie zametki, Tome 82 (2007) no. 4, pp. 483-494.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove analogs of the Telyakovskii–Pochuev criteria for multipliers of uniform convergence and of convergence in the integral metric for multiplicative systems with bounded generating sequence.
Mots-clés : multipliers of convergence in norm, multipliers of uniform convergence, Fourier–Stieltjes coefficients.
Keywords: multiplicative system, Walsh system, Borel measure
@article{MZM_2007_82_4_a0,
     author = {N. Yu. Agafonova and S. S. Volosivets},
     title = {Multipliers of {Convergence} in {Norm} of {Series} with {Respect} to {Multiplicative} {Systems}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {483--494},
     publisher = {mathdoc},
     volume = {82},
     number = {4},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_4_a0/}
}
TY  - JOUR
AU  - N. Yu. Agafonova
AU  - S. S. Volosivets
TI  - Multipliers of Convergence in Norm of Series with Respect to Multiplicative Systems
JO  - Matematičeskie zametki
PY  - 2007
SP  - 483
EP  - 494
VL  - 82
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_82_4_a0/
LA  - ru
ID  - MZM_2007_82_4_a0
ER  - 
%0 Journal Article
%A N. Yu. Agafonova
%A S. S. Volosivets
%T Multipliers of Convergence in Norm of Series with Respect to Multiplicative Systems
%J Matematičeskie zametki
%D 2007
%P 483-494
%V 82
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_82_4_a0/
%G ru
%F MZM_2007_82_4_a0
N. Yu. Agafonova; S. S. Volosivets. Multipliers of Convergence in Norm of Series with Respect to Multiplicative Systems. Matematičeskie zametki, Tome 82 (2007) no. 4, pp. 483-494. http://geodesic.mathdoc.fr/item/MZM_2007_82_4_a0/

[1] B. I. Golubov, A. V. Efimov, V. A. Skvortsov, Ryady i preobrazovaniya Uolsha, Teoriya i primeneniya, Nauka, M., 1987 | MR | Zbl

[2] G. N. Agaev, N. Ya. Vilenkin, G. M. Dzhafarli, A. I. Rubinshtein, Multiplikativnye sistemy funktsii i garmonicheskii analiz na nulmernykh gruppakh, Elm, Baku, 1981 | MR | Zbl

[3] C. Watari, “On generalized Walsh-Fourier series”, Tohoku Math. J. (2), 10:3 (1958), 211–241 | DOI | MR | Zbl

[4] F. Schipp, W. Wade, P. Simon, Walsh Series, An introduction to dyadic harmonic analysis, Akademiai Kiado, Budapest, 1990 | MR | Zbl

[5] S. Fridli, “Approximation by Vilenkin–Fourier sums”, Acta Math. Hungar., 47:1–2 (1986), 33–44 | DOI | MR | Zbl

[6] R. DeVore, “Multipliers of uniform convergence”, Enseign. Math. (2), 14:2 (1969), 175–188 | MR | Zbl

[7] S. A. Telyakovskii, “O mnozhitelyakh ravnomernoi skhodimosti ryadov Fure funktsii s zadannym modulem nepreryvnosti”, Matem. zametki, 10:1 (1971), 33–40 | MR | Zbl

[8] S. A. Telyakovskii, “Kvazivypuklye mnozhiteli ravnomernoi skhodimosti ryadov Fure s zadannym modulem nepreryvnosti”, Matem. zametki, 8:5 (1970), 619–623 | MR | Zbl

[9] G. Morgenthaler, “Walsh–Fourier series”, Trans. Amer. Math. Soc., 84:2 (1957), 472–507 | DOI | MR | Zbl

[10] V. R. Pochuev, “O mnozhitelyakh ravnomernoi skhodimosti i mnozhitelyakh ravnomernoi ogranichennosti chastnykh summ ryadov Fure”, Izv. vuzov. Ser. matem., 1977, no. 1, 74–81 | MR | Zbl

[11] M. Tomic, “Sur les facteurs de convergence des series de Fourier des fonctions continues”, Acad. Serbe Sci. Publ. Inst. Math., 8 (1955), 23–32 | MR | Zbl

[12] K. I. Oskolkov, “Neusilyaemost otsenki Lebega dlya priblizheniya funktsii s zadannym modulem nepreryvnosti summami Fure”, Sbornik statei. 1, Posv. akad. I. M. Vinogradovu k ego 80-letiyu, Tr. MIAN, 112, Nauka, M., 1971, 337–345 | MR | Zbl