On Euler's Hypothetical Proof
Matematičeskie zametki, Tome 82 (2007) no. 3, pp. 395-400
Cet article a éte moissonné depuis la source Math-Net.Ru
It is conjectured that Euler possessed an elementary proof of Fermat's theorem for $n=3$. In this note, we show that this opinion is rather credible, because Euler's results can justify an elementary proof of the nonexistence theorem for nontrivial integer solutions of the equation $x^3+y^3=z^3$.
Keywords:
Fermat's Last Theorem, coprime numbers.
@article{MZM_2007_82_3_a7,
author = {J. J. Ma\v{c}ys},
title = {On {Euler's} {Hypothetical} {Proof}},
journal = {Matemati\v{c}eskie zametki},
pages = {395--400},
year = {2007},
volume = {82},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_3_a7/}
}
J. J. Mačys. On Euler's Hypothetical Proof. Matematičeskie zametki, Tome 82 (2007) no. 3, pp. 395-400. http://geodesic.mathdoc.fr/item/MZM_2007_82_3_a7/
[1] H. Edwards, Fermat's Last Theorem, Springer, New York, 2000 | MR | Zbl
[2] G. Edvards, Poslednyaya teorema Ferma, Geneticheskoe vvedenie v algebraicheskuyu teoriyu chisel, Mir, M., 1980 | MR | Zbl
[3] M. M. Postnikov, Vvedenie v teoriyu algebraicheskikh chisel, Nauka, M., 1982 | MR | Zbl
[4] M. M. Postnikov, Teorema Ferma, Vvedenie v teoriyu algebraicheskikh chisel, Nauka, M., 1978 | MR
[5] W. Sierpinski, Elementary Theory of Numbers, PWN, Warsaw, 1964 | MR | Zbl