On Euler's Hypothetical Proof
Matematičeskie zametki, Tome 82 (2007) no. 3, pp. 395-400.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is conjectured that Euler possessed an elementary proof of Fermat's theorem for $n=3$. In this note, we show that this opinion is rather credible, because Euler's results can justify an elementary proof of the nonexistence theorem for nontrivial integer solutions of the equation $x^3+y^3=z^3$.
Keywords: Fermat's Last Theorem, coprime numbers.
@article{MZM_2007_82_3_a7,
     author = {J. J. Ma\v{c}ys},
     title = {On {Euler's} {Hypothetical} {Proof}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {395--400},
     publisher = {mathdoc},
     volume = {82},
     number = {3},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_3_a7/}
}
TY  - JOUR
AU  - J. J. Mačys
TI  - On Euler's Hypothetical Proof
JO  - Matematičeskie zametki
PY  - 2007
SP  - 395
EP  - 400
VL  - 82
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_82_3_a7/
LA  - ru
ID  - MZM_2007_82_3_a7
ER  - 
%0 Journal Article
%A J. J. Mačys
%T On Euler's Hypothetical Proof
%J Matematičeskie zametki
%D 2007
%P 395-400
%V 82
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_82_3_a7/
%G ru
%F MZM_2007_82_3_a7
J. J. Mačys. On Euler's Hypothetical Proof. Matematičeskie zametki, Tome 82 (2007) no. 3, pp. 395-400. http://geodesic.mathdoc.fr/item/MZM_2007_82_3_a7/

[1] H. Edwards, Fermat's Last Theorem, Springer, New York, 2000 | MR | Zbl

[2] G. Edvards, Poslednyaya teorema Ferma, Geneticheskoe vvedenie v algebraicheskuyu teoriyu chisel, Mir, M., 1980 | MR | Zbl

[3] M. M. Postnikov, Vvedenie v teoriyu algebraicheskikh chisel, Nauka, M., 1982 | MR | Zbl

[4] M. M. Postnikov, Teorema Ferma, Vvedenie v teoriyu algebraicheskikh chisel, Nauka, M., 1978 | MR

[5] W. Sierpinski, Elementary Theory of Numbers, PWN, Warsaw, 1964 | MR | Zbl