Nonstandard Representations of Locally Compact Groups
Matematičeskie zametki, Tome 82 (2007) no. 3, pp. 383-389.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the note, it is proved that, under natural conditions, any infinite-dimensional unitary representation $T$ of a direct product of groups $G=K\times N$, where $K$ is a compact group and $N$ is a locally compact Abelian group, is imaged by a representation of the nonstandard analog $\widetilde G$ of the group $G$ in the group of nonstandard matrices of a fixed nonstandard size.
Keywords: unitary representation, nonstandard matrix, imaging of groups, Boolean algebra, Stone space, Casimir operator.
@article{MZM_2007_82_3_a5,
     author = {V. A. Lyubetskii and S. A. Pirogov},
     title = {Nonstandard {Representations} of {Locally} {Compact} {Groups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {383--389},
     publisher = {mathdoc},
     volume = {82},
     number = {3},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_3_a5/}
}
TY  - JOUR
AU  - V. A. Lyubetskii
AU  - S. A. Pirogov
TI  - Nonstandard Representations of Locally Compact Groups
JO  - Matematičeskie zametki
PY  - 2007
SP  - 383
EP  - 389
VL  - 82
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_82_3_a5/
LA  - ru
ID  - MZM_2007_82_3_a5
ER  - 
%0 Journal Article
%A V. A. Lyubetskii
%A S. A. Pirogov
%T Nonstandard Representations of Locally Compact Groups
%J Matematičeskie zametki
%D 2007
%P 383-389
%V 82
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_82_3_a5/
%G ru
%F MZM_2007_82_3_a5
V. A. Lyubetskii; S. A. Pirogov. Nonstandard Representations of Locally Compact Groups. Matematičeskie zametki, Tome 82 (2007) no. 3, pp. 383-389. http://geodesic.mathdoc.fr/item/MZM_2007_82_3_a5/

[1] P. S. Novikov, “O neprotivorechivosti nekotorykh polozhenii deskriptivnoi teorii mnozhestv”, Sbornik statei: Posv. akad. I. M. Vinogradovu k ego 60-letiyu, Tr. MIAN, 38, Nauka, M., 1951, 279–316 | MR | Zbl

[2] V. A. Lyubetskii, “Otsenki i puchki. O nekotorykh voprosakh nestandartnogo analiza”, UMN, 44:4 (1989), 99–153 | MR | Zbl

[3] T. Iekh, Teoriya mnozhestv i metod forsinga, Mir, M., 1973 | MR | Zbl

[4] E. I. Gordon, V. A. Lyubetskii, Bulevoznachnye rasshireniya ravnomernykh struktur I, dep. v VINITI 711-80

[5] V. A. Lyubetskii, E. I. Gordon, “Bulevy rasshireniya ravnomernykh struktur.”, Issledovaniya po neklassicheskim logikam i formalnym sistemam, Nauka, M., 1983, 81–153 | MR

[6] V. G. Kanovei, V. A. Lyubetskii, “O nekotorykh klassicheskikh problemakh deskriptivnoi teorii mnozhestv”, UMN, 58:5 (2003), 3–88 | MR | Zbl

[7] M. V. Terentev, Vvedenie v teoriyu elementarnykh chastits, ITEF, M., 1998

[8] D. A. Vladimirov, Bulevy algebry, Nauka, M., 1969 | MR | Zbl

[9] L. S. Pontryagin, Nepreryvnye gruppy, GITTL, M., 1954 | MR | Zbl

[10] M. A. Evgrafov, Analiticheskie funktsii, Nauka, M., 1968 | MR | Zbl

[11] M. A. Naimark, Normirovannye koltsa, Nauka, M., 1968 | MR | Zbl

[12] J. Dixmier, Les algèbras d'opérateurs dans l'espace Hilbertien (algèbres de von Neumann), Gauthier-Villars, Paris, 1969 | MR | Zbl