Nonstandard Representations of Locally Compact Groups
Matematičeskie zametki, Tome 82 (2007) no. 3, pp. 383-389

Voir la notice de l'article provenant de la source Math-Net.Ru

In the note, it is proved that, under natural conditions, any infinite-dimensional unitary representation $T$ of a direct product of groups $G=K\times N$, where $K$ is a compact group and $N$ is a locally compact Abelian group, is imaged by a representation of the nonstandard analog $\widetilde G$ of the group $G$ in the group of nonstandard matrices of a fixed nonstandard size.
Keywords: unitary representation, nonstandard matrix, imaging of groups, Boolean algebra, Stone space, Casimir operator.
@article{MZM_2007_82_3_a5,
     author = {V. A. Lyubetskii and S. A. Pirogov},
     title = {Nonstandard {Representations} of {Locally} {Compact} {Groups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {383--389},
     publisher = {mathdoc},
     volume = {82},
     number = {3},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_3_a5/}
}
TY  - JOUR
AU  - V. A. Lyubetskii
AU  - S. A. Pirogov
TI  - Nonstandard Representations of Locally Compact Groups
JO  - Matematičeskie zametki
PY  - 2007
SP  - 383
EP  - 389
VL  - 82
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_82_3_a5/
LA  - ru
ID  - MZM_2007_82_3_a5
ER  - 
%0 Journal Article
%A V. A. Lyubetskii
%A S. A. Pirogov
%T Nonstandard Representations of Locally Compact Groups
%J Matematičeskie zametki
%D 2007
%P 383-389
%V 82
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_82_3_a5/
%G ru
%F MZM_2007_82_3_a5
V. A. Lyubetskii; S. A. Pirogov. Nonstandard Representations of Locally Compact Groups. Matematičeskie zametki, Tome 82 (2007) no. 3, pp. 383-389. http://geodesic.mathdoc.fr/item/MZM_2007_82_3_a5/