Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2007_82_3_a2, author = {V. F. Kirichenko and N. S. Baklashova}, title = {The {Geometry} of {Contact} {Lee} {Forms} and a {Contact} {Analog} of {Ikuta's} {Theorem}}, journal = {Matemati\v{c}eskie zametki}, pages = {347--360}, publisher = {mathdoc}, volume = {82}, number = {3}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_3_a2/} }
TY - JOUR AU - V. F. Kirichenko AU - N. S. Baklashova TI - The Geometry of Contact Lee Forms and a Contact Analog of Ikuta's Theorem JO - Matematičeskie zametki PY - 2007 SP - 347 EP - 360 VL - 82 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2007_82_3_a2/ LA - ru ID - MZM_2007_82_3_a2 ER -
V. F. Kirichenko; N. S. Baklashova. The Geometry of Contact Lee Forms and a Contact Analog of Ikuta's Theorem. Matematičeskie zametki, Tome 82 (2007) no. 3, pp. 347-360. http://geodesic.mathdoc.fr/item/MZM_2007_82_3_a2/
[1] K. Ikuta, “$\alpha$-submanifolds in locally conformal Kähler manifolds”, Natur. Sci. Rep. Ochanomizu Univ., 31:1 (1980), 1–12 | MR | Zbl
[2] D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics, 203, Birkhäuser, Boston, MA, 2002 | MR | Zbl
[3] V. F. Kirichenko, “Differentsialnaya geometriya glavnykh toroidalnykh rassloenii”, Fundament. i prikl. matem., 6:4 (2000), 1095–1120 | MR | Zbl
[4] V. F. Kirichenko, A. R. Rustanov, “Differentsialnaya geometriya kvazi-sasakievykh mnogoobrazii”, Matem. sb., 193:8 (2002), 71–100 | MR | Zbl
[5] V. F. Kirichenko, Differentsialno-geometricheskie struktury na mnogoobraziyakh, MPGU, M., 2003
[6] I. Vaisman, “On locally and globally conformal Kähler manifolds”, Trans. Amer. Math. Soc., 262:2 (1980), 533–542 | DOI | MR | Zbl
[7] K. Kenmotsu, “A class of almost contact Riemannian manifolds”, Tôhoku Math. J. (2), 24 (1972), 93–103 | DOI | MR | Zbl
[8] V. F. Kirichenko, “O geometrii mnogoobrazii Kenmotsu”, Dokl. RAN, 380:5 (2001), 585–587 | MR | Zbl