The Geometry of Contact Lee Forms and a Contact Analog of Ikuta's Theorem
Matematičeskie zametki, Tome 82 (2007) no. 3, pp. 347-360.

Voir la notice de l'article provenant de la source Math-Net.Ru

Questions of the conformal geometry of quasi-Sasakian manifolds are studied. A contact analog of Ikuta's theorem is obtained. It is proved that a regular locally conformally quasi-Sasakian structure is normal if and only if it is locally conformally cosymplectic and has closed contact form. It is shown that the Kenmotsu structures have these properties and that a structure with the above properties is a Kenmotsu structure if and only if its contact Lee form coincides with the contact form.
Keywords: quasi-Sasakian manifold, locally conformally quasi-Sasakian structure, locally conformally cosymplectic structure, contact Lee form, Kähler distribution.
Mots-clés : normal structure
@article{MZM_2007_82_3_a2,
     author = {V. F. Kirichenko and N. S. Baklashova},
     title = {The {Geometry} of {Contact} {Lee} {Forms} and a {Contact} {Analog} of {Ikuta's} {Theorem}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {347--360},
     publisher = {mathdoc},
     volume = {82},
     number = {3},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_3_a2/}
}
TY  - JOUR
AU  - V. F. Kirichenko
AU  - N. S. Baklashova
TI  - The Geometry of Contact Lee Forms and a Contact Analog of Ikuta's Theorem
JO  - Matematičeskie zametki
PY  - 2007
SP  - 347
EP  - 360
VL  - 82
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_82_3_a2/
LA  - ru
ID  - MZM_2007_82_3_a2
ER  - 
%0 Journal Article
%A V. F. Kirichenko
%A N. S. Baklashova
%T The Geometry of Contact Lee Forms and a Contact Analog of Ikuta's Theorem
%J Matematičeskie zametki
%D 2007
%P 347-360
%V 82
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_82_3_a2/
%G ru
%F MZM_2007_82_3_a2
V. F. Kirichenko; N. S. Baklashova. The Geometry of Contact Lee Forms and a Contact Analog of Ikuta's Theorem. Matematičeskie zametki, Tome 82 (2007) no. 3, pp. 347-360. http://geodesic.mathdoc.fr/item/MZM_2007_82_3_a2/

[1] K. Ikuta, “$\alpha$-submanifolds in locally conformal Kähler manifolds”, Natur. Sci. Rep. Ochanomizu Univ., 31:1 (1980), 1–12 | MR | Zbl

[2] D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics, 203, Birkhäuser, Boston, MA, 2002 | MR | Zbl

[3] V. F. Kirichenko, “Differentsialnaya geometriya glavnykh toroidalnykh rassloenii”, Fundament. i prikl. matem., 6:4 (2000), 1095–1120 | MR | Zbl

[4] V. F. Kirichenko, A. R. Rustanov, “Differentsialnaya geometriya kvazi-sasakievykh mnogoobrazii”, Matem. sb., 193:8 (2002), 71–100 | MR | Zbl

[5] V. F. Kirichenko, Differentsialno-geometricheskie struktury na mnogoobraziyakh, MPGU, M., 2003

[6] I. Vaisman, “On locally and globally conformal Kähler manifolds”, Trans. Amer. Math. Soc., 262:2 (1980), 533–542 | DOI | MR | Zbl

[7] K. Kenmotsu, “A class of almost contact Riemannian manifolds”, Tôhoku Math. J. (2), 24 (1972), 93–103 | DOI | MR | Zbl

[8] V. F. Kirichenko, “O geometrii mnogoobrazii Kenmotsu”, Dokl. RAN, 380:5 (2001), 585–587 | MR | Zbl