The Geometry of Contact Lee Forms and a Contact Analog of Ikuta's Theorem
Matematičeskie zametki, Tome 82 (2007) no. 3, pp. 347-360
Voir la notice de l'article provenant de la source Math-Net.Ru
Questions of the conformal geometry of quasi-Sasakian manifolds are studied. A contact analog of Ikuta's theorem is obtained. It is proved that a regular locally conformally quasi-Sasakian structure is normal if and only if it is locally conformally cosymplectic and has closed contact form. It is shown that the Kenmotsu structures have these properties and that a structure with the above properties is a Kenmotsu structure if and only if its contact Lee form coincides with the contact form.
Keywords:
quasi-Sasakian manifold, locally conformally quasi-Sasakian structure, locally conformally cosymplectic structure, contact Lee form, Kähler distribution.
Mots-clés : normal structure
Mots-clés : normal structure
@article{MZM_2007_82_3_a2,
author = {V. F. Kirichenko and N. S. Baklashova},
title = {The {Geometry} of {Contact} {Lee} {Forms} and a {Contact} {Analog} of {Ikuta's} {Theorem}},
journal = {Matemati\v{c}eskie zametki},
pages = {347--360},
publisher = {mathdoc},
volume = {82},
number = {3},
year = {2007},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_3_a2/}
}
TY - JOUR AU - V. F. Kirichenko AU - N. S. Baklashova TI - The Geometry of Contact Lee Forms and a Contact Analog of Ikuta's Theorem JO - Matematičeskie zametki PY - 2007 SP - 347 EP - 360 VL - 82 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2007_82_3_a2/ LA - ru ID - MZM_2007_82_3_a2 ER -
V. F. Kirichenko; N. S. Baklashova. The Geometry of Contact Lee Forms and a Contact Analog of Ikuta's Theorem. Matematičeskie zametki, Tome 82 (2007) no. 3, pp. 347-360. http://geodesic.mathdoc.fr/item/MZM_2007_82_3_a2/