An Eigenvector Existence Theorem in Idempotent Analysis
Matematičeskie zametki, Tome 82 (2007) no. 3, pp. 459-468 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we prove an eigenvector existence theorem for linear operators on abstract idempotent spaces in the framework of the algebraic approach. Earlier, an algebraic version of a similar statement was known only for operators in free finite-dimensional semimodules. The corresponding result for compact operators in semimodules of real continuous functions is known in the case of topological semimodules.
Keywords: abstract idempotent space, idempotent semimodule, idempotent semiring, idempotent semigroup, ordered set, ideompotent semiring, linear functional.
Mots-clés : homomorphism
@article{MZM_2007_82_3_a12,
     author = {G. B. Shpiz},
     title = {An {Eigenvector} {Existence} {Theorem} in {Idempotent} {Analysis}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {459--468},
     year = {2007},
     volume = {82},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_3_a12/}
}
TY  - JOUR
AU  - G. B. Shpiz
TI  - An Eigenvector Existence Theorem in Idempotent Analysis
JO  - Matematičeskie zametki
PY  - 2007
SP  - 459
EP  - 468
VL  - 82
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_82_3_a12/
LA  - ru
ID  - MZM_2007_82_3_a12
ER  - 
%0 Journal Article
%A G. B. Shpiz
%T An Eigenvector Existence Theorem in Idempotent Analysis
%J Matematičeskie zametki
%D 2007
%P 459-468
%V 82
%N 3
%U http://geodesic.mathdoc.fr/item/MZM_2007_82_3_a12/
%G ru
%F MZM_2007_82_3_a12
G. B. Shpiz. An Eigenvector Existence Theorem in Idempotent Analysis. Matematičeskie zametki, Tome 82 (2007) no. 3, pp. 459-468. http://geodesic.mathdoc.fr/item/MZM_2007_82_3_a12/

[1] G. L. Litvinov, V. P. Maslov, G. B. Shpiz, “Lineinye funktsionaly na idempotentnykh prostranstvakh. Algebraicheskii podkhod”, Dokl. RAN, 363:3 (1998), 298–300 | MR | Zbl

[2] G. L. Litvinov, V. P. Maslov, G. B. Shpiz, “Tenzornye proizvedeniya idempotentnykh polumodulei. Algebraicheskii podkhod”, Matem. zametki, 65:4 (1999), 573–586 | MR | Zbl

[3] G. L. Litvinov, V. P. Maslov, G. B. Shpiz, “Idempotentnyi funktsionalnyi analiz. Algebraicheskii podkhod”, Matem. zametki, 69:5 (2001), 758–797 | MR | Zbl

[4] L. Fuks, Chastichno uporyadochennye algebraicheskie sistemy, Mir, M., 1965 | MR | Zbl

[5] N. Danford, Dzh. T. Shvarts, Lineinye operatory. Obschaya teoriya, IL, M., 1962 | MR | Zbl

[6] G. B. Shpiz, “Teorema o sobstvennom vektore v idempotentnykh prostranstvakh”, Dokl. RAN, 374:1 (2000), 26–28 | MR | Zbl

[7] G. B. Shpiz, “Reshenie algebraicheskikh uravnenii v idempotentnykh polupolyakh”, UMN, 55:5 (2000), 185–186 | MR | Zbl