An Existence Criterion for a Smooth Function under Constraints
Matematičeskie zametki, Tome 82 (2007) no. 3, pp. 335-346.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study conditions for the existence of a function satisfying constraints on its value at each point and on its derivative.
Keywords: upper (lower) semicontinuous function, interval between two functions, locally Lipschitz function, Fréchet differentiable function, semimetric, Fubini's theorem.
@article{MZM_2007_82_3_a1,
     author = {A. A. Vasil'eva},
     title = {An {Existence} {Criterion} for a {Smooth} {Function} under {Constraints}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {335--346},
     publisher = {mathdoc},
     volume = {82},
     number = {3},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_3_a1/}
}
TY  - JOUR
AU  - A. A. Vasil'eva
TI  - An Existence Criterion for a Smooth Function under Constraints
JO  - Matematičeskie zametki
PY  - 2007
SP  - 335
EP  - 346
VL  - 82
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_82_3_a1/
LA  - ru
ID  - MZM_2007_82_3_a1
ER  - 
%0 Journal Article
%A A. A. Vasil'eva
%T An Existence Criterion for a Smooth Function under Constraints
%J Matematičeskie zametki
%D 2007
%P 335-346
%V 82
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_82_3_a1/
%G ru
%F MZM_2007_82_3_a1
A. A. Vasil'eva. An Existence Criterion for a Smooth Function under Constraints. Matematičeskie zametki, Tome 82 (2007) no. 3, pp. 335-346. http://geodesic.mathdoc.fr/item/MZM_2007_82_3_a1/

[1] J. Lindenstrauss, “On nonlinear projection in Banach spaces”, Michigan Math. J., 11:3 (1964), 263–287 | DOI | MR | Zbl

[2] P. Shvartsman, “On Lipschitz selections of affine-set valued mappings”, Geom. Funct. Anal., 11:4 (2001), 840–868 | DOI | MR | Zbl

[3] C. Franchetti, E. W. Cheney, “The embedding of proximinal sets”, J. Approx. Theory, 48:2 (1986), 213–225 | DOI | MR | Zbl

[4] V. N. Zamyatin, M. V. Kadets, “Chebyshevskie tsentry v prostranstve $C[a,b]$”, Teor. funktsii, funktsion. analiz i prilozh., 1968, no. 7, 20–26 | MR | Zbl

[5] S. Ya. Khavinson, “Approksimativnye svoistva nekotorykh mnozhestv v prostranstvakh nepreryvnykh funktsii”, Anal. Math., 29:2 (2003), 87–105 | DOI | MR

[6] A. A. Vasileva, “Zamknutye promezhutki v vektornoznachnykh funktsionalnykh prostranstvakh i ikh approksimativnye svoistva”, Izv. RAN. Ser. matem., 68:4 (2004), 75–116 | MR

[7] H. Federer, Geometric Measure Theory, Die Grundlehren der mathematischen Wissenschaften, 153, Springer-Verlag, New York, 1969 | MR | Zbl