Optimal Reconstruction of the Solution of the Dirichlet Problem from Inaccurate Input Data
Matematičeskie zametki, Tome 82 (2007) no. 3, pp. 323-334.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider the optimal reconstruction of the solution of the Dirichlet problem in the $d$-dimensional ball on the sphere of radius $r$ from inaccurately prescribed traces of the solution on the spheres of radii $R_1$ and $R_2$, where $R_1$. We also study the optimal reconstruction of the solution of the Dirichlet problem in the $d$-dimensional ball from a finite collection of Fourier coefficients of the boundary function which are prescribed with an error in the mean-square and uniform metrics.
Keywords: Dirichlet problem, inaccurate input data, Lagrange function, Beltrami–Laplace operator, Sobolev space.
Mots-clés : optimal reconstruction
@article{MZM_2007_82_3_a0,
     author = {E. A. Balova},
     title = {Optimal {Reconstruction} of the {Solution} of the {Dirichlet} {Problem} from {Inaccurate} {Input} {Data}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {323--334},
     publisher = {mathdoc},
     volume = {82},
     number = {3},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_3_a0/}
}
TY  - JOUR
AU  - E. A. Balova
TI  - Optimal Reconstruction of the Solution of the Dirichlet Problem from Inaccurate Input Data
JO  - Matematičeskie zametki
PY  - 2007
SP  - 323
EP  - 334
VL  - 82
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_82_3_a0/
LA  - ru
ID  - MZM_2007_82_3_a0
ER  - 
%0 Journal Article
%A E. A. Balova
%T Optimal Reconstruction of the Solution of the Dirichlet Problem from Inaccurate Input Data
%J Matematičeskie zametki
%D 2007
%P 323-334
%V 82
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_82_3_a0/
%G ru
%F MZM_2007_82_3_a0
E. A. Balova. Optimal Reconstruction of the Solution of the Dirichlet Problem from Inaccurate Input Data. Matematičeskie zametki, Tome 82 (2007) no. 3, pp. 323-334. http://geodesic.mathdoc.fr/item/MZM_2007_82_3_a0/

[1] G. G. Magaril-Il'yaev, K. Yu. Osipenko, V. M. Tikhomirov, “On optimal recovery of heat equation solutions”, Approximation Theory, A volume dedicated to Borislav Bojanov, Marin Drinov Academic Publishing House, Sofia, 2004, 163–175 | MR

[2] K. Yu. Osipenko, “O vosstanovlenii resheniya zadachi Dirikhle po netochnym iskhodnym dannym”, Vladikavkazskii matem. zhurn., 6:4 (2004), 55–62 | MR | Zbl

[3] E. V. Vvedenskaya, “Ob optimalnom vosstanovlenii resheniya uravneniya teploprovodnosti po netochno zadannoi temperature v razlichnye momenty vremeni”, Vladikavkazskii matem. zhurn., 8:1 (2006), 16–21 | MR

[4] E. A. Balova, “Ob optimalnom vosstanovlenii resheniya zadachi Dirikhle v koltse”, Vladikavkazskii matem. zhurn., 8:2 (2006), 15–23

[5] N. D. Vysk, K. Yu. Osipenko, “Optimalnoe vosstanovlenie resheniya volnovogo uravneniya po netochnym nachalnym dannym”, Matem. zametki, 81:6 (2007), 803–815 | MR | Zbl

[6] G. G. Magaril-Ilyaev, K. Yu. Osipenko, “Optimalnoe vosstanovlenie funktsii i ikh proizvodnykh po koeffitsientam Fure, zadannym s pogreshnostyu”, Matem. sb., 193:3 (2002), 79–100 | MR | Zbl

[7] G. G. Magaril-Ilyaev, K. Yu. Osipenko, “Optimalnoe vosstanovlenie funktsii i ikh proizvodnykh po priblizhennoi informatsii o spektre i neravenstva dlya proizvodnykh”, Funkts. analiz i ego pril., 37:3 (2003), 51–64 | MR | Zbl

[8] I. Stein, G. Veis, Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974 | MR | Zbl

[9] K. Yu. Osipenko, “Neravenstvo Khardi–Littlvuda–Polia dlya analiticheskikh funktsii iz prostranstv Khardi–Soboleva”, Matem. sb., 197:3 (2006), 15–34 | MR