Best Trigonometric Approximations for Some Classes of Periodic Functions of Several Variables in the Uniform Metric
Matematičeskie zametki, Tome 82 (2007) no. 2, pp. 247-261.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study best $M$-term trigonometric approximations and best orthogonal trigonometric approximations for the classes $B^r_{p,\theta}$ and $W^r_{p,\alpha}$ of periodic functions of several variables in the uniform metric.
Keywords: best trigonometric approximation, the classes $B^r_{p,\theta}$ and $W^r_{p,\alpha}$ of periodic functions, Minkowski's inequality, Hölder's inequality
Mots-clés : Vallée-Poussin kernel.
@article{MZM_2007_82_2_a9,
     author = {A. S. Romanyuk},
     title = {Best {Trigonometric} {Approximations} for {Some} {Classes} of {Periodic} {Functions} of {Several} {Variables} in the {Uniform} {Metric}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {247--261},
     publisher = {mathdoc},
     volume = {82},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_2_a9/}
}
TY  - JOUR
AU  - A. S. Romanyuk
TI  - Best Trigonometric Approximations for Some Classes of Periodic Functions of Several Variables in the Uniform Metric
JO  - Matematičeskie zametki
PY  - 2007
SP  - 247
EP  - 261
VL  - 82
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_82_2_a9/
LA  - ru
ID  - MZM_2007_82_2_a9
ER  - 
%0 Journal Article
%A A. S. Romanyuk
%T Best Trigonometric Approximations for Some Classes of Periodic Functions of Several Variables in the Uniform Metric
%J Matematičeskie zametki
%D 2007
%P 247-261
%V 82
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_82_2_a9/
%G ru
%F MZM_2007_82_2_a9
A. S. Romanyuk. Best Trigonometric Approximations for Some Classes of Periodic Functions of Several Variables in the Uniform Metric. Matematičeskie zametki, Tome 82 (2007) no. 2, pp. 247-261. http://geodesic.mathdoc.fr/item/MZM_2007_82_2_a9/

[1] O. V. Besov, “O nekotorom semeistve funktsionalnykh prostranstv. Teoremy vlozheniya i prodolzheniya”, Dokl. AN SSSR, 126:6 (1959), 1163–1165 | MR | Zbl

[2] S. M. Nikolskii, Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1969 | MR | Zbl

[3] P. I. Lizorkin, S. M. Nikolskii, “Prostranstva funktsii smeshannoi gladkosti s dekompozitsionnoi tochki zreniya”, Issledovaniya po teorii differentsiruemykh funktsii mnogikh peremennykh i ee prilozheniyam. 13, Tr. MIAN, 187, Nauka, M., 1989, 143–161 | MR | Zbl

[4] V. N. Temlyakov, Priblizhenie funktsii s ogranichennoi smeshannoi proizvodnoi, Tr. MIAN, 178, Nauka, M., 1986 | MR | Zbl

[5] S. B. Stechkin, “Ob absolyutnoi skhodimosti ortogonalnykh ryadov”, Dokl. AN SSSR, 102:2 (1955), 37–40 | MR | Zbl

[6] A. S. Romanyuk, “Nailuchshie $M$-chlennye trigonometricheskie priblizheniya klassov Besova periodicheskikh funktsii mnogikh peremennykh”, Izv. RAN. Ser. matem., 67:2 (2003), 61–100 | MR | Zbl

[7] E. S. Belinskii, “Approximation of functions of several variables by trigonometric polynomials with given number of harmonics, and estimates of $\varepsilon$-entropy”, Anal. Math., 15:2 (1989), 67–74 | DOI | MR | Zbl

[8] S. M. Nikolskii, “Neravenstva dlya tselykh funktsii konechnoi stepeni i ikh primenenie v teorii differentsiruemykh funktsii mnogikh peremennykh”, Sbornik statei : Posv. akad. I.M.Vinogradovu k ego 60-letiyu, Tr. MIAN, 38, Nauka, M., 1951, 244–278 | MR

[9] D. Jackson, “Certain problems of closest approximation”, Bull. Amer. Math. Soc., 39 (1933), 889–906 | DOI

[10] E. S. Belinskii, “Priblizhenie periodicheskikh funktsii mnogikh peremennykh “plavayuschei” sistemoi eksponent i trigonometricheskie poperechniki”, Dokl. AN SSSR, 284:6 (1985), 1294–1297 | MR | Zbl

[11] R. A. DeVore, V. N. Temlyakov, “Nonlinear approximation by trigonometric sums”, J. Fourier Anal. Appl., 2:1 (1995), 29–48 | DOI | MR | Zbl

[12] E. S. Belinskii, “Decomposition theorems and approximation by a “floating” system of exponentials”, Trans. Amer. Math. Soc., 350:1 (1998), 43–53 | DOI | MR | Zbl

[13] E. S. Belinskii, “Priblizhenie plavayuschei sistemoi eksponent na klassakh periodicheskikh funktsii s ogranichennoi smeshannoi proizvodnoi”, Issledovaniya po teorii funktsii mnogikh veschestvennykh peremennykh, YaGU, Yaroslavl, 1988, 16–33 | MR | Zbl

[14] A. S. Romanyuk, “Priblizhenie klassov periodicheskikh funktsii mnogikh peremennykh”, Matem. zametki, 71:1 (2002), 109–121 | MR | Zbl

[15] A. S. Romanyuk, “Priblizhenie klassov $B^r_{p,\theta}$ periodicheskikh funktsii mnogikh peremennykh lineinymi metodami i nailuchshie priblizheniya”, Matem. sb., 195:2 (2004), 91–116 | MR | Zbl

[16] V. N. Temlyakov, “Priblizhenie funktsii s ogranichennoi smeshannoi raznostyu trigonometricheskimi polinomami i poperechniki nekotorykh klassov funktsii”, Izv. AN SSSR. Ser. matem., 46:1 (1982), 171–186 | MR | Zbl

[17] V. N. Temlyakov, “Otsenki asimptoticheskikh kharakteristik klassov funktsii s ogranichennoi smeshannoi proizvodnoi ili raznostyu”, Vsesoyuznaya shkola po teorii funktsii (Dushanbe, 1986), Tr. MIAN, 189, Nauka, M., 1988, 138–168 | MR | Zbl