Best Trigonometric Approximations for Some Classes of Periodic Functions of Several Variables in the Uniform Metric
Matematičeskie zametki, Tome 82 (2007) no. 2, pp. 247-261

Voir la notice de l'article provenant de la source Math-Net.Ru

We study best $M$-term trigonometric approximations and best orthogonal trigonometric approximations for the classes $B^r_{p,\theta}$ and $W^r_{p,\alpha}$ of periodic functions of several variables in the uniform metric.
Keywords: best trigonometric approximation, the classes $B^r_{p,\theta}$ and $W^r_{p,\alpha}$ of periodic functions, Minkowski's inequality, Hölder's inequality
Mots-clés : Vallée-Poussin kernel.
@article{MZM_2007_82_2_a9,
     author = {A. S. Romanyuk},
     title = {Best {Trigonometric} {Approximations} for {Some} {Classes} of {Periodic} {Functions} of {Several} {Variables} in the {Uniform} {Metric}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {247--261},
     publisher = {mathdoc},
     volume = {82},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_2_a9/}
}
TY  - JOUR
AU  - A. S. Romanyuk
TI  - Best Trigonometric Approximations for Some Classes of Periodic Functions of Several Variables in the Uniform Metric
JO  - Matematičeskie zametki
PY  - 2007
SP  - 247
EP  - 261
VL  - 82
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_82_2_a9/
LA  - ru
ID  - MZM_2007_82_2_a9
ER  - 
%0 Journal Article
%A A. S. Romanyuk
%T Best Trigonometric Approximations for Some Classes of Periodic Functions of Several Variables in the Uniform Metric
%J Matematičeskie zametki
%D 2007
%P 247-261
%V 82
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_82_2_a9/
%G ru
%F MZM_2007_82_2_a9
A. S. Romanyuk. Best Trigonometric Approximations for Some Classes of Periodic Functions of Several Variables in the Uniform Metric. Matematičeskie zametki, Tome 82 (2007) no. 2, pp. 247-261. http://geodesic.mathdoc.fr/item/MZM_2007_82_2_a9/