$U(n+1)\times U(p+1)$-Hermitian Metrics on the Manifold $S^{2n+1}\times S^{2p+1}$
Matematičeskie zametki, Tome 82 (2007) no. 2, pp. 207-223.

Voir la notice de l'article provenant de la source Math-Net.Ru

A two-parameter family of invariant almost-complex structures $J_{a,c}$ is given on the homogeneous space $M\times M'=U(n+1)/U(n)\times U(p+1)/U(p)$; all these structures are integrable. We consider all invariant Riemannian metrics on the homogeneous space $M\times M'$. They depend on five parameters and are Hermitian with respect to some complex structure $J_{a,c}$. In this paper, we calculate the Ricci tensor, scalar curvature, and obtain estimates of the sectional curvature for any metric on $M\times M'$. All the invariant metrics of nonnegative curvature are described. We obtain the extremal values of the scalar curvature functional on the four-parameter family of metrics $g_{a,c,\lambda,\lambda';1}$.
Keywords: Hermitian metric on a homogenous space, Ricci tensor, sectional curvature, Hopf fibration, scalar curvature functional, holomorphic function, Lie algebra, Riemannian connection.
@article{MZM_2007_82_2_a5,
     author = {N. A. Daurtseva},
     title = {$U(n+1)\times U(p+1)${-Hermitian} {Metrics} on the {Manifold} $S^{2n+1}\times S^{2p+1}$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {207--223},
     publisher = {mathdoc},
     volume = {82},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_2_a5/}
}
TY  - JOUR
AU  - N. A. Daurtseva
TI  - $U(n+1)\times U(p+1)$-Hermitian Metrics on the Manifold $S^{2n+1}\times S^{2p+1}$
JO  - Matematičeskie zametki
PY  - 2007
SP  - 207
EP  - 223
VL  - 82
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_82_2_a5/
LA  - ru
ID  - MZM_2007_82_2_a5
ER  - 
%0 Journal Article
%A N. A. Daurtseva
%T $U(n+1)\times U(p+1)$-Hermitian Metrics on the Manifold $S^{2n+1}\times S^{2p+1}$
%J Matematičeskie zametki
%D 2007
%P 207-223
%V 82
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_82_2_a5/
%G ru
%F MZM_2007_82_2_a5
N. A. Daurtseva. $U(n+1)\times U(p+1)$-Hermitian Metrics on the Manifold $S^{2n+1}\times S^{2p+1}$. Matematičeskie zametki, Tome 82 (2007) no. 2, pp. 207-223. http://geodesic.mathdoc.fr/item/MZM_2007_82_2_a5/

[1] E. Calabi, B. Eckmann, “A class of compact complex manifolds which are not algebraic”, Ann. of Math. (2), 58 (1953), 494–500 | DOI | MR | Zbl

[2] Sh. Kobayasi, K. Nomidzu, Osnovy differentsialnoi geometrii, t. 2, Nauka, M., 1981 | MR | Zbl

[3] A. Besse, Mnogoobraziya Einshteina, t. 1, Mir, M., 1990 | MR | Zbl

[4] D. E. Volper, Sektsionnye krivizny odnorodnykh metrik na sferakh i proektivnykh prostranstvakh, Dis. $\dots$ kand. fiz.-matem. nauk, Omsk, 1996