Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2007_82_2_a5, author = {N. A. Daurtseva}, title = {$U(n+1)\times U(p+1)${-Hermitian} {Metrics} on the {Manifold} $S^{2n+1}\times S^{2p+1}$}, journal = {Matemati\v{c}eskie zametki}, pages = {207--223}, publisher = {mathdoc}, volume = {82}, number = {2}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_2_a5/} }
N. A. Daurtseva. $U(n+1)\times U(p+1)$-Hermitian Metrics on the Manifold $S^{2n+1}\times S^{2p+1}$. Matematičeskie zametki, Tome 82 (2007) no. 2, pp. 207-223. http://geodesic.mathdoc.fr/item/MZM_2007_82_2_a5/
[1] E. Calabi, B. Eckmann, “A class of compact complex manifolds which are not algebraic”, Ann. of Math. (2), 58 (1953), 494–500 | DOI | MR | Zbl
[2] Sh. Kobayasi, K. Nomidzu, Osnovy differentsialnoi geometrii, t. 2, Nauka, M., 1981 | MR | Zbl
[3] A. Besse, Mnogoobraziya Einshteina, t. 1, Mir, M., 1990 | MR | Zbl
[4] D. E. Volper, Sektsionnye krivizny odnorodnykh metrik na sferakh i proektivnykh prostranstvakh, Dis. $\dots$ kand. fiz.-matem. nauk, Omsk, 1996