Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2007_82_2_a3, author = {V. P. Gromov}, title = {Cauchy {Problem} for {Convolution} {Equations} in {Spaces} of {Analytic} {Vector-Valued} {Functions}}, journal = {Matemati\v{c}eskie zametki}, pages = {190--200}, publisher = {mathdoc}, volume = {82}, number = {2}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_2_a3/} }
V. P. Gromov. Cauchy Problem for Convolution Equations in Spaces of Analytic Vector-Valued Functions. Matematičeskie zametki, Tome 82 (2007) no. 2, pp. 190-200. http://geodesic.mathdoc.fr/item/MZM_2007_82_2_a3/
[1] M. Lax, Fluctuation and Coherence Phenomena in Classical and Quantum Physics, Gordon and Breach, New York, 1968
[2] V. P. Gromov, “Analiticheskie resheniya differentsialno-operatornykh uravnenii v lokalno vypuklykh prostranstvakh”, Dokl. RAN, 394:3 (2004), 305–308 | MR | Zbl
[3] V. P. Gromov, “Operatornyi metod resheniya lineinykh uravnenii”, Uchenye zapiski OGU, 3, Orel, 2002, 4–36
[4] F. Trèves, Ovcyanikov Theorem and Hyperdifferential Operators, Notas de Matemática, 46, Instituto de Matemática Pura e Aplicada, Conselho Nacional de Pesquisas, Rio de Janeiro, 1968 | MR | Zbl
[5] S. Steinberg, “The Cauchy problem for differential equations of infinite order”, J. Differential Equations, 9:3 (1971), 591–607 | DOI | MR | Zbl
[6] L. V. Ovsyannikov, “Singulyarnyi operator v shkale banakhovykh prostranstv”, Dokl. AN SSSR, 163 (1965), 819–822 | MR | Zbl
[7] A. O. Gelfond, A. F. Leontev, “Ob odnom obobschenii ryada Fure”, Matem. sb., 29 (71):3 (1951), 477–500 | MR | Zbl
[8] V. P. Gromov, “Poryadok i tip lineinogo operatora i tselye vektornoznachnye funktsii”, Uchenye zapiski OGU, 1, Orel, 1999, 6–23 | MR
[9] A. F. Leontev, Obobscheniya ryadov eksponent, Nauka, M., 1981 | MR | Zbl
[10] L. Khermander, Vvedenie v teoriyu funktsii neskolkikh kompleksnykh peremennykh, Mir, M., 1968 | MR | Zbl