Cauchy Problem for Convolution Equations in Spaces of Analytic Vector-Valued Functions
Matematičeskie zametki, Tome 82 (2007) no. 2, pp. 190-200.

Voir la notice de l'article provenant de la source Math-Net.Ru

The present paper is devoted to the Cauchy problem of inhomogeneous convolution equations of a fairly general nature. To solve the problems posed here, we apply the operator method proposed in some earlier papers by the author. The solutions of the problems under consideration are found using an effective method in the form of well-convergent vector-valued power series. The proposed method ensures the continuity of the obtained solutions with respect to the initial data and the inhomogeneous term of the equation.
Keywords: operator-differential convolution equation, Cauchy problem, Fourier method, entire function of exponential type
Mots-clés : Borel transform, Fourier–Laplace transform.
@article{MZM_2007_82_2_a3,
     author = {V. P. Gromov},
     title = {Cauchy {Problem} for {Convolution} {Equations} in {Spaces} of {Analytic} {Vector-Valued} {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {190--200},
     publisher = {mathdoc},
     volume = {82},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_2_a3/}
}
TY  - JOUR
AU  - V. P. Gromov
TI  - Cauchy Problem for Convolution Equations in Spaces of Analytic Vector-Valued Functions
JO  - Matematičeskie zametki
PY  - 2007
SP  - 190
EP  - 200
VL  - 82
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_82_2_a3/
LA  - ru
ID  - MZM_2007_82_2_a3
ER  - 
%0 Journal Article
%A V. P. Gromov
%T Cauchy Problem for Convolution Equations in Spaces of Analytic Vector-Valued Functions
%J Matematičeskie zametki
%D 2007
%P 190-200
%V 82
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_82_2_a3/
%G ru
%F MZM_2007_82_2_a3
V. P. Gromov. Cauchy Problem for Convolution Equations in Spaces of Analytic Vector-Valued Functions. Matematičeskie zametki, Tome 82 (2007) no. 2, pp. 190-200. http://geodesic.mathdoc.fr/item/MZM_2007_82_2_a3/

[1] M. Lax, Fluctuation and Coherence Phenomena in Classical and Quantum Physics, Gordon and Breach, New York, 1968

[2] V. P. Gromov, “Analiticheskie resheniya differentsialno-operatornykh uravnenii v lokalno vypuklykh prostranstvakh”, Dokl. RAN, 394:3 (2004), 305–308 | MR | Zbl

[3] V. P. Gromov, “Operatornyi metod resheniya lineinykh uravnenii”, Uchenye zapiski OGU, 3, Orel, 2002, 4–36

[4] F. Trèves, Ovcyanikov Theorem and Hyperdifferential Operators, Notas de Matemática, 46, Instituto de Matemática Pura e Aplicada, Conselho Nacional de Pesquisas, Rio de Janeiro, 1968 | MR | Zbl

[5] S. Steinberg, “The Cauchy problem for differential equations of infinite order”, J. Differential Equations, 9:3 (1971), 591–607 | DOI | MR | Zbl

[6] L. V. Ovsyannikov, “Singulyarnyi operator v shkale banakhovykh prostranstv”, Dokl. AN SSSR, 163 (1965), 819–822 | MR | Zbl

[7] A. O. Gelfond, A. F. Leontev, “Ob odnom obobschenii ryada Fure”, Matem. sb., 29 (71):3 (1951), 477–500 | MR | Zbl

[8] V. P. Gromov, “Poryadok i tip lineinogo operatora i tselye vektornoznachnye funktsii”, Uchenye zapiski OGU, 1, Orel, 1999, 6–23 | MR

[9] A. F. Leontev, Obobscheniya ryadov eksponent, Nauka, M., 1981 | MR | Zbl

[10] L. Khermander, Vvedenie v teoriyu funktsii neskolkikh kompleksnykh peremennykh, Mir, M., 1968 | MR | Zbl