In a Transitive Group of Conformal Transformations, Any Normal Subgroup with Orbit of Dimension $k>1$ is Inessential
Matematičeskie zametki, Tome 82 (2007) no. 2, pp. 317-320

Voir la notice de l'article provenant de la source Math-Net.Ru

Mots-clés : conformal transformation group, essential transformation group, isotropic direction, nonisotropic orbit.
Keywords: Riemannian manifold, Lorentzian manifold
@article{MZM_2007_82_2_a16,
     author = {M. N. Podoksenov},
     title = {In a {Transitive} {Group} of {Conformal} {Transformations,} {Any} {Normal} {Subgroup} with {Orbit} of {Dimension} $k>1$ is {Inessential}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {317--320},
     publisher = {mathdoc},
     volume = {82},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_2_a16/}
}
TY  - JOUR
AU  - M. N. Podoksenov
TI  - In a Transitive Group of Conformal Transformations, Any Normal Subgroup with Orbit of Dimension $k>1$ is Inessential
JO  - Matematičeskie zametki
PY  - 2007
SP  - 317
EP  - 320
VL  - 82
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_82_2_a16/
LA  - ru
ID  - MZM_2007_82_2_a16
ER  - 
%0 Journal Article
%A M. N. Podoksenov
%T In a Transitive Group of Conformal Transformations, Any Normal Subgroup with Orbit of Dimension $k>1$ is Inessential
%J Matematičeskie zametki
%D 2007
%P 317-320
%V 82
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_82_2_a16/
%G ru
%F MZM_2007_82_2_a16
M. N. Podoksenov. In a Transitive Group of Conformal Transformations, Any Normal Subgroup with Orbit of Dimension $k>1$ is Inessential. Matematičeskie zametki, Tome 82 (2007) no. 2, pp. 317-320. http://geodesic.mathdoc.fr/item/MZM_2007_82_2_a16/