In a Transitive Group of Conformal Transformations, Any Normal Subgroup with Orbit of Dimension $k>1$ is Inessential
Matematičeskie zametki, Tome 82 (2007) no. 2, pp. 317-320
Cet article a éte moissonné depuis la source Math-Net.Ru
Mots-clés :
conformal transformation group, essential transformation group, isotropic direction, nonisotropic orbit.
Keywords: Riemannian manifold, Lorentzian manifold
Keywords: Riemannian manifold, Lorentzian manifold
@article{MZM_2007_82_2_a16,
author = {M. N. Podoksenov},
title = {In a {Transitive} {Group} of {Conformal} {Transformations,} {Any} {Normal} {Subgroup} with {Orbit} of {Dimension} $k>1$ is {Inessential}},
journal = {Matemati\v{c}eskie zametki},
pages = {317--320},
year = {2007},
volume = {82},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_2_a16/}
}
TY - JOUR AU - M. N. Podoksenov TI - In a Transitive Group of Conformal Transformations, Any Normal Subgroup with Orbit of Dimension $k>1$ is Inessential JO - Matematičeskie zametki PY - 2007 SP - 317 EP - 320 VL - 82 IS - 2 UR - http://geodesic.mathdoc.fr/item/MZM_2007_82_2_a16/ LA - ru ID - MZM_2007_82_2_a16 ER -
M. N. Podoksenov. In a Transitive Group of Conformal Transformations, Any Normal Subgroup with Orbit of Dimension $k>1$ is Inessential. Matematičeskie zametki, Tome 82 (2007) no. 2, pp. 317-320. http://geodesic.mathdoc.fr/item/MZM_2007_82_2_a16/
[1] D. V. Alekseevskii, Matem. sb., 89:2 (1972), 280–296 | MR | Zbl
[2] D. Alekseevski, Ann. Global Anal. Geom., 3:1 (1985), 59–84 | DOI | MR | Zbl
[3] M. N. Podoksenov, Sib. matem. zhurn., 30:5 (1989), 135–137 | MR | Zbl
[4] M. N. Podoksenov, Sib. matem. zhurn., 34:2 (1993), 146–153 | MR | Zbl
[5] C. Barbance, C. R. Acad. Sci. Paris. Ser. A, 291:5 (1980), 347–350 | MR | Zbl
[6] M. N. Podoksenov, Differential Geometry and Applications, Proceedings of the 6th international conference (Brno, Czech Republic, August 28–September 1, 1995), 1996, 61–64 | MR | Zbl
[7] M. N. Podoksenov, Vestn. Vitebskogo gos. un-ta, 2001, no. 4(22), 75–77
[8] D. Gromol, V. Klingenberg, V. Meier, Rimanova geometriya v tselom, Mir, M., 1971 | MR | Zbl