In a Transitive Group of Conformal Transformations, Any Normal Subgroup with Orbit of Dimension $k>1$ is Inessential
Matematičeskie zametki, Tome 82 (2007) no. 2, pp. 317-320
Voir la notice de l'article provenant de la source Math-Net.Ru
Mots-clés :
conformal transformation group, essential transformation group, isotropic direction, nonisotropic orbit.
Keywords: Riemannian manifold, Lorentzian manifold
Keywords: Riemannian manifold, Lorentzian manifold
@article{MZM_2007_82_2_a16,
author = {M. N. Podoksenov},
title = {In a {Transitive} {Group} of {Conformal} {Transformations,} {Any} {Normal} {Subgroup} with {Orbit} of {Dimension} $k>1$ is {Inessential}},
journal = {Matemati\v{c}eskie zametki},
pages = {317--320},
publisher = {mathdoc},
volume = {82},
number = {2},
year = {2007},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_2_a16/}
}
TY - JOUR AU - M. N. Podoksenov TI - In a Transitive Group of Conformal Transformations, Any Normal Subgroup with Orbit of Dimension $k>1$ is Inessential JO - Matematičeskie zametki PY - 2007 SP - 317 EP - 320 VL - 82 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2007_82_2_a16/ LA - ru ID - MZM_2007_82_2_a16 ER -
%0 Journal Article %A M. N. Podoksenov %T In a Transitive Group of Conformal Transformations, Any Normal Subgroup with Orbit of Dimension $k>1$ is Inessential %J Matematičeskie zametki %D 2007 %P 317-320 %V 82 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2007_82_2_a16/ %G ru %F MZM_2007_82_2_a16
M. N. Podoksenov. In a Transitive Group of Conformal Transformations, Any Normal Subgroup with Orbit of Dimension $k>1$ is Inessential. Matematičeskie zametki, Tome 82 (2007) no. 2, pp. 317-320. http://geodesic.mathdoc.fr/item/MZM_2007_82_2_a16/