A NonDensity Criterion for $L^\infty(\mathbb R^n)$ in $L^{p(\cdot)}(\mathbb R^n)$
Matematičeskie zametki, Tome 82 (2007) no. 2, pp. 315-316
Cet article a éte moissonné depuis la source Math-Net.Ru
Keywords:
measurable function, bounded function, Banach space
Mots-clés : Luxemburg norm.
Mots-clés : Luxemburg norm.
@article{MZM_2007_82_2_a15,
author = {G. A. Kalyabin},
title = {A {NonDensity} {Criterion} for $L^\infty(\mathbb R^n)$ in $L^{p(\cdot)}(\mathbb R^n)$},
journal = {Matemati\v{c}eskie zametki},
pages = {315--316},
year = {2007},
volume = {82},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_2_a15/}
}
G. A. Kalyabin. A NonDensity Criterion for $L^\infty(\mathbb R^n)$ in $L^{p(\cdot)}(\mathbb R^n)$. Matematičeskie zametki, Tome 82 (2007) no. 2, pp. 315-316. http://geodesic.mathdoc.fr/item/MZM_2007_82_2_a15/
[1] S. G. Samko, Integral Transforms and Spec. Funct., 16:5–6 (2005), 461–482 | DOI | MR | Zbl
[2] O. Kovacik, J. Rakosnik, Czechoslovak Math. J., 41 (116):4 (1991), 592–618 | MR | Zbl
[3] D. Cruz-Uribe, A. Florenza, “Approximation identities in variable $L^p$ spaces”, Math. Nachr., 2006 (to appear)