A NonDensity Criterion for $L^\infty(\mathbb R^n)$ in $L^{p(\cdot)}(\mathbb R^n)$
Matematičeskie zametki, Tome 82 (2007) no. 2, pp. 315-316.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: measurable function, bounded function, Banach space
Mots-clés : Luxemburg norm.
@article{MZM_2007_82_2_a15,
     author = {G. A. Kalyabin},
     title = {A {NonDensity} {Criterion} for $L^\infty(\mathbb R^n)$ in $L^{p(\cdot)}(\mathbb R^n)$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {315--316},
     publisher = {mathdoc},
     volume = {82},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_2_a15/}
}
TY  - JOUR
AU  - G. A. Kalyabin
TI  - A NonDensity Criterion for $L^\infty(\mathbb R^n)$ in $L^{p(\cdot)}(\mathbb R^n)$
JO  - Matematičeskie zametki
PY  - 2007
SP  - 315
EP  - 316
VL  - 82
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_82_2_a15/
LA  - ru
ID  - MZM_2007_82_2_a15
ER  - 
%0 Journal Article
%A G. A. Kalyabin
%T A NonDensity Criterion for $L^\infty(\mathbb R^n)$ in $L^{p(\cdot)}(\mathbb R^n)$
%J Matematičeskie zametki
%D 2007
%P 315-316
%V 82
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_82_2_a15/
%G ru
%F MZM_2007_82_2_a15
G. A. Kalyabin. A NonDensity Criterion for $L^\infty(\mathbb R^n)$ in $L^{p(\cdot)}(\mathbb R^n)$. Matematičeskie zametki, Tome 82 (2007) no. 2, pp. 315-316. http://geodesic.mathdoc.fr/item/MZM_2007_82_2_a15/

[1] S. G. Samko, Integral Transforms and Spec. Funct., 16:5–6 (2005), 461–482 | DOI | MR | Zbl

[2] O. Kovacik, J. Rakosnik, Czechoslovak Math. J., 41 (116):4 (1991), 592–618 | MR | Zbl

[3] D. Cruz-Uribe, A. Florenza, “Approximation identities in variable $L^p$ spaces”, Math. Nachr., 2006 (to appear)