Irreducible Stokes Data Set Furnishing a Counterexample to the Generalized Riemann--Hilbert Problem
Matematičeskie zametki, Tome 82 (2007) no. 2, pp. 305-309.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: Stokes data set, Riemann–Hilbert problem, system of linear differential equations, meromorphic function, Riemann sphere, Poincaré rank.
Mots-clés : monodromy
@article{MZM_2007_82_2_a13,
     author = {I. V. Vyugin},
     title = {Irreducible {Stokes} {Data} {Set} {Furnishing} a {Counterexample} to the {Generalized} {Riemann--Hilbert} {Problem}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {305--309},
     publisher = {mathdoc},
     volume = {82},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_2_a13/}
}
TY  - JOUR
AU  - I. V. Vyugin
TI  - Irreducible Stokes Data Set Furnishing a Counterexample to the Generalized Riemann--Hilbert Problem
JO  - Matematičeskie zametki
PY  - 2007
SP  - 305
EP  - 309
VL  - 82
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_82_2_a13/
LA  - ru
ID  - MZM_2007_82_2_a13
ER  - 
%0 Journal Article
%A I. V. Vyugin
%T Irreducible Stokes Data Set Furnishing a Counterexample to the Generalized Riemann--Hilbert Problem
%J Matematičeskie zametki
%D 2007
%P 305-309
%V 82
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_82_2_a13/
%G ru
%F MZM_2007_82_2_a13
I. V. Vyugin. Irreducible Stokes Data Set Furnishing a Counterexample to the Generalized Riemann--Hilbert Problem. Matematičeskie zametki, Tome 82 (2007) no. 2, pp. 305-309. http://geodesic.mathdoc.fr/item/MZM_2007_82_2_a13/

[1] V. Vazov, Asimptoticheskie razlozheniya reshenii obyknovennykh differentsialnykh uravnenii, Mir, M., 2006

[2] A. A. Bolibruch, S. Malek, C. Mitchi, “On the generalized Riemann–Hilbert problem with irregular singularities”, Expo. Math., 24:3 (2006), 235–272 | MR | Zbl

[3] A. A. Bolibrukh, Fuksovy differentsialnye uravneniya i golomorfnye rassloeniya, MTsNMO, M., 2000

[4] J. Moser, “The order of singularity in Fuchs' theory”, Math. Z., 72:1 (1960), 379–398 | DOI | MR | Zbl