On Quotient Spaces of Compact Lie Groups by Tori Centralizers
Matematičeskie zametki, Tome 82 (2007) no. 2, pp. 293-304.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the graph of the homogeneous space $K/L$, where $K$ is a compact Lie group and $L$ is the centralizer of a torus in $K$. We obtain a characterization of those spaces whose graphs admit embeddings in a certain standard graph. We compute the number of arcs in such graphs. We also give a simple expression for the Euler class of the homogeneous space $K/L$.
Keywords: homogeneous space, root system, simple root, graph of a root system
Mots-clés : Euler class.
@article{MZM_2007_82_2_a12,
     author = {A. N. Shchetinin},
     title = {On {Quotient} {Spaces} of {Compact} {Lie} {Groups} by {Tori} {Centralizers}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {293--304},
     publisher = {mathdoc},
     volume = {82},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_2_a12/}
}
TY  - JOUR
AU  - A. N. Shchetinin
TI  - On Quotient Spaces of Compact Lie Groups by Tori Centralizers
JO  - Matematičeskie zametki
PY  - 2007
SP  - 293
EP  - 304
VL  - 82
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_82_2_a12/
LA  - ru
ID  - MZM_2007_82_2_a12
ER  - 
%0 Journal Article
%A A. N. Shchetinin
%T On Quotient Spaces of Compact Lie Groups by Tori Centralizers
%J Matematičeskie zametki
%D 2007
%P 293-304
%V 82
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_82_2_a12/
%G ru
%F MZM_2007_82_2_a12
A. N. Shchetinin. On Quotient Spaces of Compact Lie Groups by Tori Centralizers. Matematičeskie zametki, Tome 82 (2007) no. 2, pp. 293-304. http://geodesic.mathdoc.fr/item/MZM_2007_82_2_a12/

[1] I. N. Bernshtein, I. M. Gelfand, S. I. Gelfand, “Kletki Shuberta i kogomologii prostranstv $G/P$”, UMN, 28:3 (1973), 3–26 | MR | Zbl

[2] A. N. Schetinin, “O kogomologiyakh ermitovykh simmetricheskikh prostranstv”, Matem. zametki, 74:6 (2003), 937–946 | MR

[3] A. L. Onischik, Topologiya tranzitivnykh grupp preobrazovanii, Fizmatlit, M., 1995 | MR | Zbl

[4] Doan Kuin, “Mnogochleny Puankare kompaktnykh odnorodnykh rimanovykh prostranstv s neprivodimoi statsionarnoi gruppoi”, Tr. sem. vektor. tenzor. analiz., 14, Izd-vo MGU, M., 1968, 33–93 | MR | Zbl

[5] S. Khelgason, Differentsialnaya geometriya, gruppy Li i simmetricheskie prostranstva, Faktorial Press, M., 2005 | MR | Zbl

[6] N. Burbaki, Gruppy i algebry Li, Gl. 7–8: Podalgebry Kartana, regulyarnye elementy, rasscheplyaemye poluprostye algebry Li, Mir, M., 1978 | MR | Zbl

[7] N. Burbaki, Gruppy i algebry Li, Gl. 9: Kompaktnye veschestvennye gruppy Li, Mir, M., 1986 | MR | Zbl

[8] A. Borel, F. Hirzebruch, “Characteristic classes and homogeneous spaces. II”, Amer. J. Math., 81 (1959), 315–382 | DOI | MR | Zbl

[9] F. Khirtsebrukh, Topologicheskie metody v algebraicheskoi geometrii, Mir, M., 1973 | MR | Zbl