On Quotient Spaces of Compact Lie Groups by Tori Centralizers
Matematičeskie zametki, Tome 82 (2007) no. 2, pp. 293-304
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the graph of the homogeneous space $K/L$, where $K$ is a compact Lie group and $L$ is the centralizer of a torus in $K$. We obtain a characterization of those spaces whose graphs admit embeddings in a certain standard graph. We compute the number of arcs in such graphs. We also give a simple expression for the Euler class of the homogeneous space $K/L$.
Keywords:
homogeneous space, root system, simple root, graph of a root system
Mots-clés : Euler class.
Mots-clés : Euler class.
@article{MZM_2007_82_2_a12,
author = {A. N. Shchetinin},
title = {On {Quotient} {Spaces} of {Compact} {Lie} {Groups} by {Tori} {Centralizers}},
journal = {Matemati\v{c}eskie zametki},
pages = {293--304},
publisher = {mathdoc},
volume = {82},
number = {2},
year = {2007},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2007_82_2_a12/}
}
A. N. Shchetinin. On Quotient Spaces of Compact Lie Groups by Tori Centralizers. Matematičeskie zametki, Tome 82 (2007) no. 2, pp. 293-304. http://geodesic.mathdoc.fr/item/MZM_2007_82_2_a12/